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1 Exercices
Exercice 1.1 (Calcul de polynôme de matrice).

(a) Soit M ∈ Mn(K) et P ∈ K[X] de degré d. Estimer la complexité du calcul naïf de P (M).
(b) Supposons qu’on connaisse un polynôme annulateur A de M , de degré a < d. Utiliser la

division euclidienne pour calculer P (M) de manière plus efficace, et donner la complexité
du calcul.

(c) Dans le cas où M est la matrice d’une symétrie, donner la complexité du calcul de P (M).
(d) Lorsqu’on a A un polynôme annulateur de M et A = A1A2 avec A1, A2 premiers entre

eux dans K[X], utiliser le lemme des noyaux pour en déduire les matrices des projecteurs
associés à la décomposition

Kn = KerA1(M)⊕KerA2(M).

Combien coûte ce calcul en fonction du degré de A1 et de A2 ?

Exercice 1.2 (Calcul du polynôme caractéristique).
Soit un corps K tel que K a au moins n+ 1 éléments distincts x0, · · · , xn et M ∈ Mn(K).

(a) Expliquer comment calculer χM par interpolation en fonction des det(xiIn −M).
(b) Donner la complexité totale de ce calcul.
(c) Si K = Fp avec p < n premier, comment peut-on adapter la méthode pour calculer χM ?

Exercice 1.3 (Recherche du polynôme minimal d’une matrice).
(a) Soit K un corps et M ∈ Mn(K). Pour un vecteur v ∈ Kn non nul, on note πM,v le plus

petit polynôme non nul unitaire P tel que P (M)(v) = 0. Montrer que πM,v|πM .
(b) Pour v ̸= 0 fixé, indiquer comment calculer πM,v à l’aide d’un pivot de Gauss.
(c) Donner la complexité de ce calcul en nombre d’opérations dans K.
(d) Montrer comment retrouver πM en fonction de certains πM,v à l’aide du ppcm.
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Exercice 2.1 (Noyau et image d’une matrice).

(a) En se basant sur la commande rref de Xcas (mais pas ker ni image, qu’on peut tester à
part si on veut), écrire un algorithme qui à une matrice M ∈ Mm,n(K) associe une base
de son noyau dans Kn, ou une famille libre d’équations de celui-ci.

(b) Faire de même avec l’image de M .
(c) Déduire des deux cas précédents une fonction qui à une famille de vecteurs de Kn associe

une famille libre d’équations du sous-espace vectoriel qu’elle engendre, et réciproquement
qui à une famille d’équations associe une base du sous-espace vectoriel qu’elle détermine.

Exercice 2.2 (Calcul de déterminant de matrice dans un anneau).
(a) Pour M ∈ Mn(Z) à coefficients « aléatoires » avec n = 50 ou 100, évaluer les temps

de calculs de det(M) en Xcas. Essayer d’en déduire une indication sur la complexité de
l’algorithme utilisé.
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(b) On définit, pour une taille de matrice n, la matrice dans Mn(Z[x2, x4, · · · , x2n]) dont le
(i, j)-ième coefficient est xi+j. Comparer les temps de calcul de det(M) pour n = 6 et
n = 12. Conjecturer là aussi la complexité de l’algorithme utilisé.

Exercice 2.3 (Calculs effectifs de polynômes caractéristique et minimal).
(a) Écrire un algorithme basé sur l’exercice 1.1 pour calculer le polynôme caractéristique

d’une matrice aléatoire M ∈ Mn(Q). L’appliquer à une matrice M ∈ M10(Z) avec des
coefficients raisonnables.

(b) Écrire un algorithme basé sur l’exercice 1.2 pour calculer le polynôme minimal d’une
matrice M ∈ Mn(Q) et tester avec M de taille 3 ayant des 0 sur la diagonale et des 1
ailleurs, puis avec une matrice aléatoire de taille 30.

Exercice 2.4 (Modélisation d’un casse-tête).
On considère un damier 3 par 3 de pions ayant une face noire et une face blanche. On peut
effectuer les manoeuvres suivantes : retourner tous les pions d’une ligne, d’une colonne ou d’une
diagonale, il y a donc 8 manoeuvres possibles (3 de lignes, 3 de colonnes, 2 de diagonale). Il
s’agit de savoir si en partant d’une configuration donnée on peut à l’aide de ces manipulations
arriver à la configuration où tous les pions sont face noire visible, et le cas échéant donner les
manipulations pour s’y ramener. On pourra utiliser l’algèbre linéaire dans (Z/2Z)9.
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