
Université Grenoble Alpes M1
M1 Algèbre effective 2024-2025

Irréductibilité et factorisation de polynômes dans Fp

1 Exercices
Ici, p est partout un nombre premier.

Exercice 1.1 (Recherche de racines).
Soit P ∈ Fp[X].

(a) Rappeler pourquoi P a les mêmes racines dans Fp que pgcd(P,Xp−X) (voir le TD PGCD
si nécessaire)

(b) Donner les racines de P dans Fp avec P = X4 +X + 1 et p = 5 ou 7.
(c) Quel est le coût du calcul dans le pire cas avec P de degré n dans Fp[X] ?

Exercice 1.2 (Irréductibilité d’un polynôme au cas par cas).
Soit P = X4 +X + 2 ∈ Z[X]. P est-il irréductible modulo 3 ? modulo 5 ?

Exercice 1.3 (Coût moyen de recherche de polynôme irréductible).
(a) En utilisant le cours, rappeler le coût d’un test d’irréductibilité de P ∈ Fp[X] unitaire en

fonction de p et n = degP .
(b) Encore avec le cours, rappeler la proportion asymptotique de polynômes irréductibles

unitaires parmi les polynômes unitaires de degré n.
(c) En déduire un algorithme probabiliste de recherche de polynôme irréductible de degré n

dans Fp[X], et donner le coût moyen de cet algorithme.

Exercice 1.4 (Construction explicite de F16).
(a) Déterminer un polynôme de degré 4 irréductible dans F2[X]. Utiliser ce polynôme pour

générer la table d’addition d’un corps K de taille 16 (noté GF(2,4) dans Xcas).
(b) Déterminer un générateur g de K∗, et construire la table des puissances.
(c) Avec cette table, donner une méthode rapide pour multiplier, inverser, calculer une racine

carrée dans le corps K.
(d) Résoudre dans K les équations x2 + x+ 1 = 0, x2 + gx+ g2 + g+ 1 = 0, x2 + gx+ 1 = 0.

Exercice 1.5 (Puissance p-ième dans les anneaux de polynômes en caractéristique p).
(a) Rappeler pourquoi pour tout x ∈ Fp, xp = x.
(b) Dans tout anneau commutatif unitaire A tel que p · 1A = 0 (on parle d’anneau de carac-

téristique p), montrer que FrobA : x 7→ xp est encore un morphisme d’anneaux
(c) Pour tout P ∈ Fp[X], montrer que P p = P (Xp).
(d) Réciproquement, montrer que si K est un corps fini de caractéristique p, avec les injections

canoniques,
Fp[X] = {P ∈ K[X] |P (Xp) = FrobK[X](P ) = P p}.

Exercice 1.6 (Factorisation squarefree (SQF) dans les corps finis).
L’algorithme de Yun vu pour Q[X] ne fonctionne pas tel quel en caractéristique p, mais voici
comment néanmoins trouver la factorisation sqf (squarefree) d’un polynôme P ∈ Fp[X].

On pose P = QR avec Q (resp. R) le produit des facteurs irréductibles de P de multiplicité
multiple de p (resp. première à p), avec la même multiplicité que dans P , et on cherche d’abord
à calculer Q et R connaissant P .

(a) Rappeler pourquoi P est sans facteurs carrés si et seulement si pgcd(P, P ′) = 1.
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(b) Montrer que pgcd(P, P ′) = P si et seulement si P est une puissance p-ième dans Fp[X].
(c) Montrer que P ′ = QR′, et en déduire que pgcd(P, P ′) = Q pgcd(R,R′).
(d) En déduire comment calculer successivement R/ pgcd(R,R′), R, puis Q.
(e) Montrer que l’algorithme de Yun s’applique tel quel à R.
(f) Enfin, en écrivant Q = Ap pour un certain A ∈ Fp[X], montrer qu’on peut donner la

factorisation sqf sqf de P par récurrence sur le degré.
(g) Appliquer cet algorithme pour calculer la factorisation square-free de X7 +X6 +X + 1

modulo 2.

Exercice 1.7 (Factorisation à degrés distincts (DDF)).
Soit P ∈ Fp[X] de degré n, on cherche à écrire

P =
n∏

k=1

Pk

où Pk est le produit des facteurs irréductibles de P de degré exactement k (avec leur multipli-
cité).

(a) Montrer avec le cours que pour tout k ≤ n, pgcd(P,Xpk −X) =
∏

d|k Pd.
(b) Rappeler comment calculer efficacement ces pgcd, quel est le coût total ?
(c) En déduire comment calculer chacun des Pk.

Exercice 1.8 (PGCD de polynômes à coefficients entiers).
Soit P et Q deux polynômes à coefficients entiers.

(a) Montrer que pour tout nombre premier p ne divisant pas les coefficients dominants de P
et Q, le degré du pgcd de P et Q dans Q[X] est inférieur ou égal au degré du pgcd de P
et Q dans Z/pZ[X].

(b) En déduire le PGCD de X4 +X + 1 et X3 + 7X2 + 7X + 1 dans Z[X].

Exercice 1.9 (Algorithme de Cantor-Zassenhaus).
Ici, on suppose p > 2, on cherche à factoriser un polynôme P ∈ Fp[X] de degré n.

(a) Avec les exercices précédents, justifier qu’on peut se ramener à P sans facteur carré et
dont tous les facteurs irréductibles partagent le même degré donné d|n.

(b) Montrer que pour tout Q ∈ Fp[X],

Qpd −Q = Q(Q(pd−1)/2 − 1)(Q(pd−1)/2 + 1)

et que P |Qpd −Q.
(c) En déduire que

P = pgcd(P,Q) pgcd(P,Q(pd−1)/2 − 1) pgcd(P,Q(pd−1)/2 + 1).

(d) Avec l’aide du théorème des restes chinois, montrer que si P est réductible, cette factori-
sation est non triviale pour au moins la moitié des Q ∈ Fp[X] de degré au plus n− 1.

(e) En déduire l’algorithme probabiliste (de Cantor-Zassenhaus) pour factoriser P , et donner
une estimation de son coût.

(f) Quel est son avantage par rapport à l’algorithme de Berlekamp ?

Exercice 1.10 (Cantor-Zassenhaus pour les racines carrées).
Ceci est une version simplifiée de l’exercice 1.9, avec encore p > 2 (on peut le faire avant ou
après).

Soit P = X2 + aX + b ∈ Fp[X].

(a) Rappeler un algorithme utilisant le pgcd pour savoir si P a deux racines ou non dans Fp.
On suppose pour la suite qu’on est bien dans ce cas, et on cherche à calculer les racines.
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(b) Montrer qu’alors P |Xp −X et identifier A = Fp[X]/(P ).
(c) Montrer que pour tout polynôme linéaire L(X) = mX + Y ∈ Fp[X], P |Lp − L (calculer

dans A).
(d) En déduire que pour au moins p2/2 polynômes linéaires L, 1 ̸= pgcd(P,L(p−1)/2−1) ̸= P .
(e) Donner un algorithme probabiliste pour calculer les racines de P qui évite une recherche

exhaustive.

Exercice 1.11 (Calcul de produit par FFT).
Effectuer le produit de X2 + 2X − 1 et 2X + 1 par FFT dans F5[X].

Exercice 1.12 (Généralisation à Fq).
Ici, q est une puissance de p et Fq un corps fini de caractéristique p. Reprendre les énoncés
théoriques des exercices précédents sur Fp[X] et les adapter à Fq[X].
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Exercice 2.1.
Vérifier/faire les parties calculatoires des exercices de TD.

Exercice 2.2 (Algorithme de Hörner et facteurs de degré 1).
Implémenter l’algorithme de Hörner pour évaluer un polynome en un point. Modifier l’algo-
rithme pour calculer le quotient. Écrire une fonction qui renvoie les facteurs de degré 1 d’un
polynôme dans Z/pZ pour p premier.

Exercice 2.3 (Test d’irréductibilité).
(a) Écrire une fonction testant si un polynôme est irréductible modulo p.
(b) L’utiliser pour écrire un algorithme qui à n et p associe un polynôme irréductible unitiare

de degré n dans Fp[X] puis une représentation du corps fini GF(p, n).

Exercice 2.4 (Polynômes et factorisation SQF).
(a) Écrire une fonction déterminant si un polynôme est squarefree dans Fp[X].
(b) Prolongement : écrire l’algorithme suggéré dans l’exercice 1.6 et le tester sur des exemples

du TD.

Exercice 2.5 (Exemple de factorisation DDF).
(a) En se basant sur les idées de l’exercice 1.7 (pas besoin d’écrire l’algorithme complet),

déterminer les degrés des facteurs irréductibles de X7 +X5 + 2X4 +X3 +X2 + 2X + 1
modulo 5 et 7.

(b) Quelle est la factorisation sur Q de ce polynôme ?
(c) Plus généralement, écrire l’algorithme de factorisation DDF et le tester sur cet exemple

Exercice 2.6 (Corps F256 (GF(2,8))).
Implémenter le corps à 256 éléments de manière efficace (en utilisant un entier 8 bits et une
table).
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Exercice 2.7 (FFT).
(a) Trouver un nombre premier p < 231 de la forme 1 + 225k, k ∈ Z, on le fixe pour la suite.
(b) Déterminer une racine primitive 225-ième de l’unité pour p.
(c) A quelle condition peut-on calculer le produit de deux polynômes à coefficients dans Z/pZ

par FFT ?
(d) Le faire sur un exemple en utilisant l’instruction fft avec 3 arguments.
(e) Soit n < 231. Montrer qu’on peut effectuer un produit de polynômes de Z/nZ[X] dont

la somme des degrés est < 225 en utilisant au plus 3 nombres premiers p de ce type et 3
produits par FFT.

(f) En déduire une méthode de multiplication de polynômes à coefficients entiers par FFT.
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