
Université Grenoble Alpes M1

M1 Algèbre effective 2024-2025

Cryptographie, RSA

1 Exercices

Exercice 1.1 (RSA jouet).
On prend p = 17 et q = 13 donc n = 221.

(a) Déterminer ϕ(n).
(b) Véri�er qu'on peut utiliser e = 7 comme exposant de chi�rement. Calculer l'exposant de

déchi�rement d.
(c) Chi�rer M = 3. Déchi�rer C = 198.
(d) Pour p et q quelconque, estimer la complexité des opérations de calcul des clefs, chi�re-

ment, déchi�rement.

Exercice 1.2 (RSA e = 3).
(a) Expliquer quel est l'intérêt de choisir e = 3 comme clef publique si on ne se préoccupe

pas de la sécurité.
(b) Supposons que e = 3 soit utilisé pour véri�er des signatures, prenons pour exemple jouet

n = 587 × 383. Comment peut-on calculer e�cacement une signature s correspondant à
un nombre m = se (mod n) sans connaitre la factorisation de n si s est inférieur à n1/3 ?
Par exemple pour m = 205379.

(c) Pouquoi vaut-il mieux choisir e = 257 ou e = 65537 que e = 3 ?

Exercice 1.3 (Di�e-Hellmann, secret commun).
Exemple jouet :
Alice et Bob choisissent de travailler dans Z/19Z et d'utiliser g = 2 qui est un générateur de
(Z/19Z)∗.

(a) Alice choisit a = 7 et Bob choisit b = 13. Donner A et B puis le secret commun.
(b) Que se passe-t-il si Alice choisit a = 25 ? À quelle valeur maximale pour a et b Alice et

Bob peuvent-ils se restreindre ?
(c) Déterminer la table de toutes les puissances de 2 dans Z/19Z.
(d) Alice et Bob choisissent deux autres entiers a et b et s'envoient A = 4 et B = 17. En

utilisant la table, déterminer les valeurs de a et b. Quelle est la valeur du secret commun ?

Sécurité :
On a vu qu'une personne qui connaît les entiers A et B (par exemple en espionnant les échanges
entre Alice et Bob) pouvait calculer le secret commun si on travaille dans Z/19Z. Pour espérer
sécuriser le secret commun, il faut travailler dans Z/pZ avec p un nombre premier plus grand.

(a) Commençons par essayer avec p = 65537 et g = 3.

(i) Véri�er que 3 est un générateur de (Z/pZ)∗.
(ii) Si Alice choisit a = 12345, combien doit-elle e�ectuer de multiplications pour calculer

A par l'algorithme de la puissance rapide ?
(iii) À quelle valeur maximale pour a et b Alice et Bob peuvent-ils se restreindre ?
(iv) Quelle est la taille de la table des puissances de 3 modulo p ? Comparer avec la

question (ii). La sécurité du secret commun vous semble-t-elle su�sante ?

1

(b) On prend maintenant un nombre premier dont l'écriture en base 2 comporte exactement
1024 bits, et tel que g = 2 est un générateur de (Z/pZ)∗. La sécurité du secret commun
vous semble-t-elle su�sante ?

Exercice 1.4 (Attaque active contre Di�e-Hellman).
On pourra travailler avec des valeurs explicites sur un exemple jouet de groupe (Z/19Z)∗ avec
comme générateur g = 2. Alice et Bob veulent échanger un secret commun, ils choisissent
chacun une clef secrète a, b et envoient ga et gb. Charles intercepte les messages et envoie à la
place aux deux ge où e est sa propre clef secrète. Comment Charles doit-il ensuite modi�er les
message émis par Alice qu'il intercepte pour les retransmettre à Bob ?

Exercice 1.5 (Attaque contre RSA (module partagé)).
Alice et Bob décident de recevoir des messages cryptés en utlisant le système RSA. Ils publient
donc chacun leur clef publique.

On va étudier une attaque qu'un espion peut exploiter si Alice et Bob utilisent tous les
deux la même valeur de n. On suppose donc que la clef publique d'Alice est (n, eA), et celle de
Bob (n, eB). On suppose que Catherine envoie une même information m à Alice et à Bob, donc
envoie le message crypté cA = meA (mod n) à Alice et le message crypté cB = meB (mod n) à
Bob. Un espion Daniel intercepte les deux messages cryptés.

Dans l'exercice, on prendra n = 4897 pour pouvoir faire des calculs à la calculatrice.

(a) Dans cette question on suppose qu'on connaît la factorisation de n : n = 59×83. Expliquer
pourquoi on peut prendre eA = 71 et eB = 227. Déterminer la clef privée d'Alice.

(b) Déterminer une identité de Bézout entre 71 et 227.
(c) En déduire deux entiers u et v tels que m = cuAc

v
B (mod n)

(d) Daniel intercepte cA = 1846 et cB = 487. Déterminer m sans utiliser la factorisation de
n.

(e) Expliquer pourquoi Daniel ne peut pas utiliser la factorisation de n dans une attaque
réelle contre RSA.

Exercice 1.6 (Attaque RSA par itération).
(a) Exemple jouet : on prend n = 77 et une clé publique c = 7, le message original est a = 2.

Retrouver le message original par itération de la fonction de cryptage sur le message
crypté.

(b) En général, quelles sont les valeurs de c vulnérables à une attaque par itération ?

2 TP

Exercice 2.1 (Véri�cation machine des calculs).
Véri�er les résultats des exercices du TD.

Exercice 2.2 (Générer une paire de clefs).
Générer deux grands nombres premiers p et q au hasard puis une paire de clefs, en utilisant
par exemple les fonctions nextprime et randint de Xcas ou le test de Miller-Rabin si votre
langage préféré n'a pas de test de primalité.

Exercice 2.3 (Codage et décodage d'un message (sur PC)).
On transforme une chaine de caractères en une liste d'entiers et réciproquement (avec asc et
char en Xcas, ou l'application répétée de ord et chr en Python). Pour le moment on code
caractère par caractère, sans s'inquiéter de la sécurité du codage. Pour coder/décoder une liste
l d'entiers, on peut utiliser pow(l,c,n) en Xcas et Python.

(a) En utilisant la paire de clefs de l'exercice précédent, coder un message puis décoder ce
message pour véri�er.

2

(b) Décoder le message authenti�é situé à l'URL
http://www-fourier.univ-grenoble-alpes.fr/~parisse/mat249/rsa1

Exercice 2.4 (Attaque simple).
On a vu que le codage monoalphabétique n'est pas une bonne idée, une attaque possible étant
la recherche de fréquences, ici on peut utiliser une attaque encore plus simple : la personne
souhaitant décoder un message codé avec une clef publique sans en connaitre la clef secrète
calcule la liste des ac (mod n) pour les 256 valeurs possibles de a et compare au message.

Décoder de cette manière le message situé à l'URL
http://www-fourier.univ-grenoble-alpes.fr/~parisse/mat249/rsa2

Exercice 2.5 (Padding aléatoire).
Pour parer à l'attaque précédente, on augmente le nombre de valeurs possibles de a pour que
le calcul de la liste de toutes les puissances possibles de a soit trop long.

Plusieurs stratégies sont possibles, l'une d'elle consiste à ajouter à a un multiple aléatoire de
256. Comment la personne qui recoit un message crypté retrouvera-t-elle le message en clair ?
Implémenter cette méthode.

Exercice 2.6 (Groupement de lettres).
On peut aussi grouper par paquets de x caractères et on associe à un groupe de caractères
l'entier correspondant en base 256. Par exemple, si on prend des groupes de x = 3 caractères,
"ABC" devient 65*256^2+66*256+67 car le code ASCII de A, B, C est respectivement 65, 66,
67.

(a) Donner une condition reliant n et x pour que le décodage redonne le message original.
(b) Choisir une paire de clefs véri�ant cette condition pour x = 3 (calculatrices avec entiers

représentés par des �ottants) ou x = 8 (autres).
(c) Écrire un programme de codage et de décodage avec groupement (on commencera par

compléter le message original par des espaces pour qu'il soit un multiple de 8 caractères,
en Xcas et Python). L'instruction len permet de connaitre la taille d'une chaîne de
caractères, (En Xcas, on pourra utiliser la fonction convert(.,base,256)d'écriture en
base 256).

Exercice 2.7 (Sécurité du codage).
(a) Véri�er sur l'exemple de l'exercice 1.1 et du 2.2 que la connaissance de ϕ(n) et de n

permet de calculer p et q par résolution d'une équation de degré 2.
(b) Si on connait seulement c et d, peut-on retrouver ϕ(n) ?
(c) La sécurité du codage repose donc sur la di�culté de factoriser n. Tester sur des entiers

de taille croissante le temps nécessaire au logiciel pour factoriser p et q. Une valeur de n
de taille 128 bits, 512 bits, 1024 bits parait-elle su�sante ?

Exercice 2.8 (Sécurité du codage).
Le choix de c et de d est aussi important. Pour le comprendre, prenons p = 11 et q = 13.

(a) Représenter pour di�érentes valeurs de c les points (a, ac (mod n)). Plus le dessin obtenu
est aléatoire, plus il sera di�cile à une personne mal intentionnée de déchi�rer un message
sans connaitre la clef. (En Xcas, on pourra utiliser les instructions seq pour générer une
suite de terme général exprimée en fonction d'une variable formelle, et scatterplot(l)
qui représente le nuage de points donné par une liste l de couples de coordonnées. En
Python, on peut utiliser l'instruction plot de matplotlib).

(b) Observer en particulier les cas où c n'est pas premier avec ϕ(n) (comment voit-on que
RSA ne fonctionne pas ?) et également le cas c = 3.

Exercice 2.9 (Attaque par les restes chinois).
Une personne souhaite envoyer le même message x à trois destinataires di�érents, ayant chacun
leur propre clef publique c = 3, N1, c = 3, N2 et c = 3, N3 avec c = 3 pour les 3 destinataires.

3

Il envoie donc y1 = x3 (mod N1), y2 = x3 (mod N2) et y3 = x3 (mod N3). Une personne
mal intentionnée arrive à intercepter y1, y2 et y3. En appliquant les restes chinois, elle peut en
déduire x.

Par exemple, retrouver x sans chercher à factoriser les clefs pour

46693373016 mod 180711261397, (-111575037168) mod 840724735099,

(-18270191368) mod 372130013641

Exercice 2.10 (Attaque RSA).
On suppose qu'on connait un couple de clé secrète/publique
96664445695884629095302836378328116675824715046626033 pour 65537 pour n valant
1485368763791603971165032953281737852964691152265640113

En déduire la factorisation de n.

Exercice 2.11 (Attaque RSA par fraction continue).
Cette attaque fonctionne si la clef privée d est petite et si p et q sont du même ordre de
grandeur :

q < p < 2q.

Le principe consiste à calculer les réduites de e/n. Soit k ∈]0, d[tel que

ed = 1 + kϕ(n) = 1 + k(n+ 1− p− q) = kn+ 1 + k(1− p− q)

On divise par dn :
e

n
=

k

d
+

1 + k(1− p− q)

dn

donc : ∣∣∣∣ en − k

d

∣∣∣∣ = k(p+ q − 1)− 1

dn
≤ k(p+ q)

nd
.

(a) En déduire que
∣∣ e
n
− k

d

∣∣ ≤ 3√
n
.

Si 3/
√
n < 1/(2d2), alors les résultats connus sur les fractions continues permettent de

conclure que k/d est une réduite de e/n. On calcule ces réduites en utilisant les résultats
intermédiaires de l'algorithme d'Euclide étendu et on teste si mde = m (mod n).

(b) Mettre en oeuvre cette attaque, par exemple pour

n=24121770232611008805519974758722894470290624535341

c=7078963133555205950174183804340026159121720607229

Exercice 2.12 (Polllard=rho).
Programmer l'algorithme de Pollard-rho pour chercher un facteur de taille au plus environ 10
digits d'un entier.

4

	Exercices
	TP

