
χCAS pour TI Nspire CX et CX II

Bernard.Parisse@univ-grenoble-alpes.fr

2022

Table des matières
1 Introduction 2

2 Installation 3
2.1 Examens . 3
2.2 Mise en garde . 4

3 Interface "pretty print" 4

4 Interface shell : premiers pas 4

5 Commandes usuelles de calcul formel 6
5.1 Développer et factoriser . 6
5.2 Analyse . 6
5.3 Résoudre . 9
5.4 Arithmétique . 10

5.4.1 Entiers . 10
5.4.2 Polynômes . 11
5.4.3 Z/nZ et corps finis . 15

5.5 Algèbre linéaire, vecteurs, matrices 15

6 Probabilités et statistiques 17
6.1 Tirages aléatoires . 17
6.2 Lois de probabilités . 17
6.3 Statistiques descriptives 1-d . 18
6.4 Statistiques descriptives 2-d, régressions. 19

7 Courbes et autres représentations graphiques 19

8 Géométrie analytique. 28

9 Unités et constantes physiques. 30

10 L’éditeur d’expressions 30

1

11 Sessions de calculs 32
11.1 Edition de l’historique. 32
11.2 Variables . 32
11.3 Sauvegarde et compatibilité . 32

12 Programmation 33
12.1 Prise en main (programmation) . 33
12.2 Quelques exemples . 36
12.3 Commandes utilisables . 36

13 Interpréteur MicroPython intégré 37
13.1 Les modules standard : math, cmath, random 37
13.2 Le module cas . 37
13.3 Le module graphic . 38
13.4 Le module matplotl . 38
13.5 Le module arit . 38
13.6 Le module linalg . 38
13.7 Le module numpy . 38

14 Applications additionnelles. 43

15 Raccourcis claviers. 44

16 Extinction, reset, horloge. 45

17 Copyright, licences et remerciements 45

18 Développement en C++ avec χCAS et Ndless 46

1 Introduction
Ce document explique comment prendre en main et utiliser efficacement sur cal-

culatrices TI Nspire CX le système de calcul formel χCAS (une version adaptée du
logiciel Xcas 1 pour cette calculatrice) ainsi que l’environnement MicroPython le plus
complet à ce jour pour faire des mathématiques sur calculatrices (section 13).

χCAS est une calculatrice graphique formelle indépendante de la calculatrice ns-
pire avec des fonctionnalités pour les élèves qui envisagent une poursuite d’études en
sciences ou en maths : grande varitété de représentations graphiques, géométrie ana-
lytique, arithmétique et cryptographie (corps finis premiers et extensions, polynômes,
etc.), algèbre, algèbre linéaire, analyse numérique, calcul flottant multi-précision et
certifié (arithmétique d’intervalle), etc.

Toutes ces fonctionnalités sont intégrées, on peut représenter sur un même gra-
phique un histogramme et un graphe de fonction et une droite, on peut écrire un pro-
gramme pour faire une simulation et représenter les résultats graphiquement, ou uti-
liser les fonctions mathématiques dans un programme en syntaxe Python. De plus les

1. https://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html

2

https://www-fourier.ujf-grenoble.fr/~parisse/giac_fr.html

sessions de calcul sont compatibles avec Xcas, Xcas pour Firefox et avec d’autres cal-
culatrices compatibles χCAS (Numworks, Casio Graph 90 et 35eii).

Ici, on passera un peu de temps à apprendre comment utiliser le shell et les ou-
tils d’édition pour ensuite les faire travailler harmonieusement ensemble, sans autres
limites que la mémoire et la vitesse de la TI (tout à fait raisonnable pour une calcu-
latrice). Il est donc fortement recommandé de lire cette documentation pour une utili-
sation optimale de χcas, à l’exception de la section 18 qui s’adresse uniquement aux
programmeurs qui souhaitent programmer leur calculatrice en C ou C++.

N.B. : Ce document est interactif, vous pouvez modifier les commandes et voir le
résultat de l’exécution des commandes proposées en exemple en cliquant sur le bouton
exe (ou en validant avec la touche Entrée).

2 Installation
Avant d’installer χCAS, vous devrez installer ndless 2 en suivant l’un des tutoriels

suivants :
— Tutoriel si vous possédez une Nspire CX ou CX CAS avec OS 4.5.0 ou infé-

rieur 3.
— Tutoriel si vous possédez une Nspire CX ou CX CAS avec un OS 4.5.x (x entre

1 et 3) 4

— Tutoriel si vous possédez une Nspire CX II ou CX CAS II 5

Ensuite, ouvrez le logiciel de communication de la TI Nspire et transférez
— luagiac.luax.tns et khicaslua.tns (interface pretty print)
— khicas.tns (interface shell)
— éventuellement le répertoire d’exemples Xcas.

2.1 Examens
— Attention, certains concours ou examens interdisent l’utilisation de calcu-

latrices formelles. Il est de la responsabilité de l’utilisateur de vérifier que les
calculatrices formelles sont autorisées avant d’utiliser χCAS dans un examen
ou concours. Les auteurs ne sauraient être tenus pour responsables en cas d’uti-
lisation non autorisée.

— χCAS est compatible avec le mode examen sur les Nspire 5.2 et 4.5.3 si on
lance le mode examen depuis le shell de χCAS (cf. la section 4 pour lancer le
shell, puis touche calculatrice entre esc et tab, puis touche ex). Vous pouvez
revenir de l’OS 5.3 vers l’OS 5.2 en utilisant le programme Backspire 6.

2. https://ndless.me/
3. https://tiplanet.org/forum/viewtopic.php?t=20446
4. https://tiplanet.org/forum/viewtopic.php?f=57&t=24267
5. https://tiplanet.org/forum/viewtopic.php?f=57&t=24264
6. https://tiplanet.org/forum/archives_voir.php?id=3152639

3

https://tiplanet.org/forum/viewtopic.php?t=20446
https://tiplanet.org/forum/viewtopic.php?f=57&t=24267
https://tiplanet.org/forum/viewtopic.php?f=57&t=24264
https://tiplanet.org/forum/archives_voir.php?id=3152639

2.2 Mise en garde
Texas Instruments ne semble pas vouloir laisser ses utilisateurs libres d’utiliser des

programmes ndless, et fait tout son possible pour rendre ndless inutilisable à chaque
mise à jour (en général sous prétexte de “sécurité”). Si vous faites une mise à jour à
partir d’octobre 2020, vous prenez le risque de ne plus pouvoir utiliser ndless donc de
ne plus pouvoir utiliser χCAS. Je vous conseille vivement de ne jamais faire de mise
à jour de votre TI Nspire sans vous être bien renseigné sur le site tiplanet 7.

3 Interface "pretty print"
Cette interface ouvre un écran de calcul similaire à celui du Scratchpad de la TI Ns-

pire (A Calculs du menu principal). À privilégier si vous voulez surtout faire des calculs
en profitant de la saisie 2d des expressions. Si vous n’êtes pas sur l’écran d’accueil de
la Nspire, tapez la touche ON/HOME. Ensuite tapez 2, puis sélectionnez khicaslua
dans le répertoire ndless.

Les commandes les plus utilisées de Xcas sont listées depuis la touche menu. On
peut accéder au shell (section 4) en tapant * sur une ligne vide, et à l’éditeur de scripts
(section 12) en tapant + ou +"nom_de_fichier" (mettre le nom du script sans
l’extension .py.tns).

4 Interface shell : premiers pas
Si vous n’êtes pas sur l’écran d’accueil de la Nspire, tapez la touche ON/HOME.

Ensuite tapez 2, puis sélectionnez khicas dans le répertoire ndless, et tapez sur
enter (vous pouvez aussi aller dans le répertoire Xcas et sélectionner un exemple puis
touche enter pour ouvrir un exemple). Ceci ouvre après une dizaine de secondes un
“shell” dans lequel vous pourrez taper les commandes de calcul formel de Xcas. Lors
de la première exécution vous devrez choisir entre l’interpréteur Xcas et l’interpréteur
MicroPython. Taper enter pour choisir Xcas (sauf si vous êtes principalement intéressé
par l’environnement Python, cf. la section 13).
Pour quitter χCAS et revenir à l’explorateur de la Nspire, il faut taper la touche doc
(doc signifie documents) plusieurs fois (deux fois depuis le shell).

Par exemple, tapez 1/2+1/6 puis enter, vous devriez voir le résultat 2/3 s’afficher
sur la ligne du dessous.

Vous pouvez recopier dans la ligne de commande une commande de l’historique en
utilisant le curseur vers le haut ou vers le bas puis enter, puis vous pouvez modifier la
commande et l’exécuter. Par exemple, taper sur la touche curseur vers le haut, enter et
remplacez 1/6 par 1/3.

Vous pouvez utiliser le résultat de la dernière commande avec la touche Ctrl-Ans
de la calculatrice (ans en couleur au-dessus de la touche (-)). Il vaut en général mieux
définir une variable comme résultat d’une commande si on souhaite la réutiliser. Pour
cela, on utilise une des deux instructions d’affectation :

7. https://tiplanet.org

4

— l’affectation vers la droite => s’obtient avec la touche sto→ de la calculatrice
(Ctrl puis var), par exemple 2=>A met 2 dans la variable A. Vous pouvez
ensuite utiliser A dans un calcul, sa valeur sera remplacée par 2.

— l’affectation vers la gauche =. Par exemple A=2 fait la même chose que 2=>A.
Pour vous aider à saisir les commandes Xcas les plus utiles, χCAS dispose d’un

catalogue d’une centaine de commandes, avec une courte description et le plus souvent
un exemple d’exécution facile à recopier. Appuyez sur la touche doc, choisissez une
catégorie avec le curseur, par exemple Algebre, tapez enter, puis choisissez une com-
mande avec le curseur, par exemple factor. Un deuxième appui sur la touche menu
vous affiche une courte description de la commande, en général avec un exemple. En
tapant sur tab (ou enter), vous recopiez l’exemple en ligne de commande. Vous pouvez
alors valider (enter) ou modifier la commande et valider (enter) pour factoriser un autre
polynôme que celui donné en exemple.

Lorsqu’une commande renvoie une expression, celle-ci est affichée en écriture na-
turelle (affichage 2-d). Vous pouvez faire défiler l’affichage avec les touches du curseur
lorsque l’expression est grande. Tapez sur esc pour revenir au shell.

Maintenant essayez de taper la commande plot(sin(x)). Indication : taper
doc, puis sélectionner Courbes, ou shift-3.

Lorsqu’une commande renvoie un graphe, celui-ci est affiché. Vous pouvez mo-
difier la fenêtre graphique d’affichage avec les touches + ou - (zoom in ou out), les
touches du curseur, orthonormaliser le repère (touche /) ou faire une recherche auto-
matique de l’échelle (autoscale touche *). Pour enlever ou remettre les axes et gradua-
tions, tapez sur var. Tapez sur esc pour revenir au shell.

Vous pouvez effacer l’historique des calculs et les variables pour commencer un
nouvel exercice : depuis le menu doc sélectionnez 9 Effacer historique. Vous
avez ensuite le choix entre effacer l’écran en conservant les variables (touche de vali-
dation à droite de la touche U) ou en les effaçant (esc). Vous pouvez visualiser la place
occupée par les variables en tapant sur la touche var. Pour effacer une variable pour
faire de la place en mémoire, sélectionnez la commande purge dans ce menu, puis
taper le nom de variable à effacer (ou sélectionnez la variable depuis le menu var).

Pour quitter χCAS, appuyez sur la touche doc 2 fois. Lorsque vous lancez une
autre application, les variables et l’historique des calculs sont sauvegardés (dans le fi-
chier session.xw.tns du répertoire Xcas de la Nspire), ils seront restaurés lorsque
vous reviendrez dans χCAS.

Remarques :
— Depuis le shell de calcul, les touches 1 à 9, 0, ., (et) précédées de shift font

apparaitre un petit menu pour saisir rapidement certaines commandes.
— Lorsque le curseur est sur la ligne de commande juste après un nom de com-

mande, l’appui sur la touche curseur vers le bas permet de voir l’aide sur la
commande (si l’aide existe) et de saisir un exemple.

— Exemple : tapez shift 2, puis 3 (integrate), flèche vers le bas, puis tab ou enter
Modifiez l’expression à intégrer selon vos besoin puis tapez enter

5

5 Commandes usuelles de calcul formel

5.1 Développer et factoriser
Depuis le catalogue, sélectionner le sous-menu Algebre (2) ou le menu rapide

shift-1
— factor : factorisation. Raccourci clavier shift-* (préfixé) ou =>* (infixé touche

sto puis *), par exemple x^4-1=>*

(x− 1) (x+ 1)
(
x2 + 1

)
. Utiliser cfactor pour factoriser sur C.

— partfrac : développement d’un polynôme ou décomposition en éléments
simples pour une fraction. Raccourci clavier =>+ (touche sto puis +), par exemple
(x+1)^4=>+

x4 + 4x3 + 6x2 + 4x+ 1

ou 1/(x^4-1)=>+

1

4 (x− 1)
− 1

4 (x+ 1)
− 1

2 (x2 + 1)
.

— simplify : essai de simplifier une expression. Raccourci clavier =>/ (touche
→ puis /), par exemple sin(3x)/sin(x)=>/

2 cos (2x) + 1

Attention, cette commande est gourmande en mémoire, et la TI en a peu, le
risque de reset existe.

— ratnormal : développer une expression, écrire une fraction sous forme irré-
ductible.

5.2 Analyse
Depuis le catalogue (doc), sélectionner le sous-menu Analyse (4) ou le menu

rapide shift-2
— diff : dérivation. On peut aussi utiliser la notation ’ (shift-*) pour dériver par

rapport à x, ainsi
diff(sin(x),x)

cosx

et sin(x)’

cosx

6

sont équivalents. Pour dériver plusieurs fois, ajouter le nombre de dérivations
par exemple diff(sin(x^2),x,3)

−8x3 cos
(
x2
)
− 12x sin

(
x2
)

.
— integrate : primitive si 1 ou 2 arguments, par exemple

integrate(sin(x))

− cosx

ou integrate(1/(t^4-1),t)

ln |t− 1|
4

− ln |t+ 1|
4

− arctan t

2

pour
∫

1
t4−1 dt

Calcul d’intégrale définie si 4 arguments, par exemple integrate(sin(x)^4,x,0,pi)

3

8
π

pour
∫ π
0
sin(x)4 dx. Mettre une des bornes d’intégration sous forme approchée

si on souhaite un calcul approché d’intégrale définie, par exemple
integrate(sin(x)^4,x,0.0,pi)

1.1780972451

— limit : limite d’une expression. Exemple limit((cos(x)-1)/x^2,x=0)

−1

2

— tabvar : tableau de variations d’une expression. Par exemple tabvar(x^3-7x+5)
on peut vérifier avec le graphe plot(x^3-7x+5,x,-4,4)

7

x

 y

−4 −3 −2 −1 0 1 2 3 4

−5

0

5

10

15

— taylor et series : développement de Taylor (ou développement limité ou
asymptotique). Par exemple
taylor(sin(x),x=0,5)

x− x3

6
+

x5

120
+ x6order_size (x)

— sum : somme discrète. Par exemple
sum(k^2,k,1,n)

2 (n+ 1)
3 − 3 (n+ 1)

2
+ n+ 1

6

calcule
∑n
k=1 k

2,
sum(k^2,k,1,n)=>*

1

6
n (n+ 1) (2n+ 1)

8

calcule la somme et l’écrit sous forme factorisée.

5.3 Résoudre
Depuis le catalogue, sélectionner le sous-menu Resoudre (menu puis touche ln)
— solve permet de résoudre de manière exacte une équation (se ramenant à une

équation polynomiale). Il faut préciser la variable si ce n’est pas x par exemple
solve(t^2-1=0,t)

[−1, 1]

.
Si la recheche exacte échoue, la commande fsolve permet de faire une réso-
lution approchée, soit par une méthode itérative en partant d’une valeur initiale
fsolve(cos(x)=x,x=0.0)

0.739085133215

, soit par dichotomie fsolve(cos(x)=x,x=0..1)

[0.739085133215]

.
Pour avoir des solutions complexes, utiliser csolve.
On peut faire des hypothèses sur la variable que l’on cherche, par exemple
assume(m>1)

m

puis solve(m^2-4=0,m)

[2]

.
— solve permet aussi de résoudre des systèmes polynomiaux simples, on donne

en 1er argument la liste des équations, en 2ème argument la liste des variables.
Par exemple intersection d’un cercle et d’une droite
solve([x^2+y^2+2y=3,x+y=1],[x,y])

[[0, 1] , [2,−1]]

— linsolve permet de résoudre des systèmes linéaires. On lui passe la liste des
équations et la liste des variables (par convention une expression équivaut à
l’équation expression=0). Par exemple
linsolve([x+2y=3,x-y=7],[x,y])[

17

3
,−4

3

]

9

linsolve renvoie la solution générale du système (y compris si la solution
n’est pas unique).

— desolve permet de résoudre de manière exacte certaines équations différen-
tielles, par exemple pour résoudre y′ = 2y, on tape desolve(y’=2y).
Un exemple où on indique une condition initiale, la variable indépendante et la
fonction inconnue :
desolve([y’=2y,y(0)=1],x,y) Utiliser odesolve pour une résolu-
tion approchée et plotode pour une représentation graphique de solution cal-
culée de manière approchée.

— rsolve permet de résoudre de manière exacte certaines relations de récur-
rences un+1 = f(un, ...), par exemple les suites arithmético-géométriques, par
exemple un+1 = 2un + 3, u0 = 1
rsolve(u(n+1)=2*u(n)+3,u(n),u(0)=1)

[4 · 2n − 3]

5.4 Arithmétique
Lorsque cela est nécessaire, on distingue l’arithmétique des entiers de celle des po-

lynômes par l’existence du préfixe i (comme integer) dans un nom de commande,
par exemple ifactor factorise un entier (pas trop grand) alors que factor facto-
rise un polynôme (et cfactor factorise un polynôme sur les complexes). Certaines
commandes fonctionnent à la fois pour les entiers et les polynômes, par exemple gcd
et lcm.

5.4.1 Entiers

Depuis le catalogue, sélectionner le sous-menu Arithmetic, Crypto (menu
5)

— iquo(a,b), irem(a,b) quotient et reste de la division euclidienne de deux
entiers.

iquo(23,13),irem(23,13)

1, 10

— isprime(n) teste si n est un nombre premier. Le test est probabiliste pour
de grandes valeurs de n.
isprime(2^64+1)

faux

— ifactor(n) factorise un entier pas trop grand (jusque 128 bits environ). Par
exemple
ifactor(2^64+1)

67280421310721 · 274177

10

Raccourci clavier touches→ puis * (=>*)
— gcd(a,b), lcm(a,b) PGCD et PPCM de deux entiers ou de deux polnômes

gcd(25,15),lcm(25,15)

5, 75

gcd(x^3-1,x^2-1),lcm(x^3-1,x^2-1)

x− 1,
(
x2 + x+ 1

) (
x2 − 1

)
— iegcd(a,b) renvoie 3 entiers u, v, d tels que au+ bv = d où d est le PGCD

de a et b, avec |u| < |b| et |v| < |a|.

u,v,d:=iegcd(23,13); 23u+13v

[4,−7, 1] , 1

— ichinrem([a,m],[b,n]) lorsque cela est possible, renvoie c tel que c =
a (mod m) et c = b (mod n) (si m et n sont premiers entre eux, c existe).
c,n:=ichinrem([1,23],[2,13]); irem(c,23);
irem(c,13)

[93, 299] , 1, 2

— powmod(a,n,m) calcule an (mod m) par l’algorithme de la puissance ra-
pide modulaire.
powmod(7,22,23)

1

Les commandes asc et char permettent de convertir une chaine de caractères en liste
d’entiers (entre 0 et 255) et réciproquement, ce qui permet de faire facilement de la
cryptographie avec des messages sous forme de chaines de caractères.

5.4.2 Polynômes

Depuis le catalogue, sélectionner le sous-menu Polynomes (8). La variable est
par défaut x, sinon il faut la spécifier en général en dernier argument, par exemple
degree(x^2*y) ou degree(x^2*y,x) renvoient 2, alors que degree(x^2*y,y)
renvoie 1

— coeff(P,n) coefficient de xn dans P , lcoeff(P) coefficient dominant de
P , par exemple
P:=x^3+3x; coeff(P,1); lcoeff(P)

x3 + 3x, 3, 1

11

— degre(P) degré du polynôme P .
degree(x^3)

3

— quo(P,Q), rem(P,Q) quotient et reste de la division euclidienne de P par Q
P:=x^3+7x-5; Q:=x^2+x; quo(P,Q); rem(P,Q)

x3 + 7x− 5, x2 + x, x− 1, 8x− 5

— proot(P) : racines approchées de P (réelles et complexes)

proot(x^5+x+1)

[−0.754877666247,−0.5− 0.866025403784i,−0.5 + 0.866025403784i, 0.877438833123− 0.74486176662i, 0.877438833123 + 0.74486176662i]

Représentation graphique :

point(proot(x^5+x+1))

12

x

 y

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

— interp(X,Y) : pour deux listes de même taille, polynôme d’interpolation
passant par les points (Xi, Yi).

X,Y:=[0,1,2,3],[1,-3,-2,0]; P:=interp(X,Y)=>+

[0, 1, 2, 3] , [1,−3,−2, 0] , −4x
3 + 27x2 − 47x+ 6

6

Représentation graphique

scatterplot(X,Y); plot(P,x,-1,4)

13

x

 y

−1 0 1 2 3 4

−2

0

2

4

6

— resultant(P,Q) : résultant des polynômes P et Q
P:=x^3+7x-5; Q:=x^2+x; resultant(P,Q)

x3 + 7x− 5, x2 + x, 65

— hermite(x,n) : n-ième polynôme de Hermite, orthogonal pour la densité
e−x

2

dx sur R
— laguerre(x,n,a) : n-ième polynôme de Laguerre,
— legendre(x,n) : n-ième polynôme de Legendre, orthogonal pour la densité

dx sur [−1, 1]
— tchebyshev1(n) et tchebyshev2(n) polynômes de Tchebyshev de 1ère

et 2ème espèce définis par :

Tn(cos(x)) = cos(nx), Un(cos(x)) sin(x) = sin((n+ 1)x)

14

5.4.3 Z/nZ et corps finis

Pour travailler avec des classes modulo n, utiliser la notation a mod n, par exemple
sqrt(2 mod 7). Ceci s’applique aussi pour travailler sur des corps finis premiers
Z/pZ. Pour travailler sur des corps finis non premiers, il faut d’abord définir le corps
avec GF, puis on utilise un polynôme en le générateur du corps.

5.5 Algèbre linéaire, vecteurs, matrices
Xcas ne fait pas de différence entre vecteur et liste. Par exemple pour faire le produit

scalaire de deux vecteurs, on peut saisir :

v:=[1,2]; w:=[3,4]

dot(v,w)

11

Pour saisir une matrice élément par élément, taper sur shift-7 (touche M comme
matrice) puis matrix(ou doc i (editer matrice). Vous pouvez ensuite créer une
nouvelle matrice ou éditer une matrice existante parmi la liste de variables proposées.
Pour de petites matrices, vous pouvez aussi entrer en ligne de commandes une liste de
listes de même taille. Par exemple pour définir la matrice

A =

(
1 2
3 4

)
A:=[[1,2],[3,4]]

ou [[1,2],[3,4]]=>A [
1 2
3 4

]
Il est fortement conseillé de stocker les matrices dans des variables pour éviter de

les saisir plusieurs fois.
Pour entrer une matrice dont les coefficients sont donnés par une formule, on peut

utiliser la commande matrix, par exemple
matrix(2,2,(j,k)->1/(j+k+1))(

1 1
2

1
2

1
3

)
renvoie la matrice dont le coefficient ligne j et colonne k vaut 1

j+k+1 (attention les
indices commencent à 0).

La matrice identité de taille n est renvoyée par la commande idn(n), alors que
ranm(n,m,loi,[parametres]) renvoie une matrice à coefficients aléatoires de
taille n,m. Par exemple

15

U:=ranm(4,4,uniformd,0,1)
0.0881637986749 0.536643749103 0.360248812009 0.630750506185
0.0543795586564 0.819389336277 0.251521021593 0.0686232172884
0.178203014191 0.346399624366 0.852082391735 0.614078260958
0.714221911505 0.784336711746 0.453634891659 0.433968523517


N:=ranm(4,4,normald,0,1)
−0.57241508091 −0.751538700822 0.989770363266 −0.00575141421859
0.902209004052 0.455987131429 −1.85967614286 −0.243668831329
−1.61539092837 0.558232005133 −0.159613435564 1.35165685556
−0.16425534864 1.27150836747 0.245690624229 −0.595841236292


Pour exécuter une commande sur des matrices, s’il s’agit d’arithmétique de base

(+,-,* inverse), on utilise les opérations au clavier. Pour les autres commandes. de-
puis le catalogue, sélectionner le sous-menu Matrices (menu sin)

— eigenvals(A)

√
33 + 5

2
,
−
√
33 + 5

2

eigenvects(A) [√
33− 3 −

√
33− 3

6 6

]
renvoient les valeurs propres et vecteurs propres d’une matrice carrée A.

— P,D:=jordan(A)[√
33− 3 −

√
33− 3

6 6

]
,

[√
33+5
2 0

0 −
√
33+5
2

]
calcule la forme normale de Jordan d’une matrice A (à coefficients exacts) et
renvoie les matrices P et D telles que P−1AP = D, avec D triangulaire supé-
rieure (diagonale si A est diagonalisable)

— Ak:=matpow(A,k) 1
66

(√
33− 3

) (√
33+5
2

)k√
33− 1

66

(
−
√
33− 3

) (−√33+5
2

)k√
33 1

132

(√
33− 3

) (√
33+5
2

)k (√
33 + 11

)
+ 1

132

(
−
√
33− 3

) (−√33+5
2

)k (
−
√
33 + 11

)
6
66

(√
33+5
2

)k√
33− 6

66

(
−
√
33+5
2

)k√
33 6

132

(√
33+5
2

)k (√
33 + 11

)
+ 6

132

(
−
√
33+5
2

)k (
−
√
33 + 11

)


calcule la puissance k-ième d’une matrice A avec k une variable formelle.
— rref effectue la réduction sous forme échelonnée d’une matrice A (pivot de

Gauss)
— lu calcule la décomposition LU d’une matriceA et renvoie une permutation de

matrice P et deux matricesL triangulaire inférieure etU triangulaire supérieure
telles que PA = LU . Le résultat de la commande

16

P,L,U:=lu(A)

[0, 1] ,

[
1 0
3 1

]
,

[
1 2
0 −2

]
peut être passé en argument à la commande linsolve(P,L,U,v)[

0,
1

2

]
pour résoudre un système Ax = b de matrice A en résolvant deux systèmes
triangulaires (calcul en O(n2) au lieu de O(n3)).

— qr calcule la décomposition QR d’une matrice A et renvoie deux matrices Q
orthogonale et R triangulaire supérieure telles que A = QR.

— svd(A) calcule la factorisation en valeurs singulières d’une matrice A, et ren-
voie U orthogonale, S vecteur des valeurs singulières, Q orthogonale tels que
A=U*diag(S)*tran(Q). Le rapport de la plus grande valeur singulière de
S sur la plus petite donne le nombre de condition de A relativement à la norme
euclidienne, plus ce nombre est grand, plus on perd en précision en résolvant
un système Ax = b lorsque b n’est pas connu exactement.

6 Probabilités et statistiques

6.1 Tirages aléatoires
Depuis le catalogue, sélectionner le sous-menu Probabilites (menu 9) puis

sélectionnez rand()

0.38078169385

(réel selon la loi uniforme dans [0, 1]) ou
n:=6:; randint(n)

“Done”, 6

(entier entre 1 et n). De nombreuses autres fonctions aléatoires existent, avec comme
préfixe rand, suivi par le nom de la loi, par exemple randbinomial(n,p) renvoie
un entier aléatoire selon la loi binomiale de paramètres n, p. Pour créer un vecteur ou
une matrice aléatoire, utiliser la commande ranv ou ranm (menu Alglin, Matrice),
par exemple pour un vecteur de 10 composantes selon la loi normale centrée réduite

ranv(10,normald,0,1)

[−2.28261976775, 0.652261860753,−0.690651824321,−0.323190436625, 0.157460267236,−0.324617014178,−0.361127118455,−0.018325111754, 1.11875485898, 0.045381648085]

6.2 Lois de probabilités
Depuis le catalogue, sélectionner le sous-menu Probabilites (9). Les lois pro-

posées dans le catalogue sont la loi binomiale, la loi normale, la loi exponentielle et la

17

loi uniforme. D’autres lois sont disponibles depuis Tout : chisquared, geometric,
multinomial studentd, fisherd, poisson.

Pour obtenir la distribution cumulée d’une loi, on saisit le nom de la loi et le suffixe
_cdf (sélectionner cdf dans le catalogue sous-menu Probabilités et taper F1). Pour
obtenir la distribution cumulée inverse, on saisit le nom de la loi et le suffixe _icdf
(sélectionner cdf dans le catalogue sous-menu Probabilités et taper F2).

Exemple : calcul de l’intervalle centré I pour la loi normale de moyenne 5000 et
d’écart-type 200 tel que la probabilité d’être en-dehors de I soit de 5% :

M:=5000; S:=200; normald_icdf(M,S,0.025);normald_icdf
(M,S,0.975)

5000, 200, 4608.00720309, 5391.99279691

6.3 Statistiques descriptives 1-d
Ces fonctions agissent sur des listes

l:=[9,11,6,13,17,10]

Depuis le catalogue, sélectionner le sous-menu Statistiques (menu log)
— mean(l)

11

: moyenne arithmétique d’une liste
— stddev(l)

√
105

3

: écart-type d’une liste
Utiliser
stddevp(l)

√
14

pour avoir un estimateur non biaisé de l’écart-type d’une population dont l est
un échantillon

— median(l)

10.0

, quartile1(l)

9.0

,
quartile3(l)

13.0

18

renvoient respectivement la médiane, le 1er et 3ème quartiles d’une liste
Pour les statistiques 1-d de listes avec effectifs, on remplace l par deux listes de même
longueur, la 1ère liste est la liste des valeurs de la série statistique, la 2ème liste est
la liste des effectifs. Voir aussi les commandes du menu shift-3 histogram et
barplot.

6.4 Statistiques descriptives 2-d, régressions.
Entrez les deux listes de données dans deux variables, par exemple X:=[1,2,3,4,5]

et Y:=[3,5,6,8,11], ou dans une variable matrice ayant 2 colonnes, depuis le shell
avec le menu shift-6 8 matrix(.
Depuis le catalogue, sélectionner le sous-menu Statistiques (touches menu log),
pour les régressions, depuis le shell, tapez shift-6.

— correlation(X,Y) calcule la corrélation entre 2 listes de même taille.
— covariance(X,Y) calcule la covariance entre 2 listes de même taille.
— les commandes de suffixe _regression(X,Y) calculent des ajustements

par régression au sens des moindres carrés, les commandes de suffixe _regression_plot
tracent la courbe représentative de la régression (Ces commandes affichent de
plus le coefficient R2 qui permet de quantifier la qualité de l’ajustement (plus
R2 est proche de 1, meilleur est l’ajustement). Khicas a des commandes pour
faire des régressions linéaires, exponentielles, logarithmiques, puissance, poly-
nomiales et logistique.

— Par exemple linear_regression(X,Y) renvoie les coefficients m, p de
la droite de régression linéaire y = mx+ p.
linear_regression_plot(X,Y) trace la droite d’ajustement des don-
nées contenues dans les listes X,Y de même taille.

— voir aussi les commandes scatterplot, polygonplot et polygonscatterplot
pour afficher les données sur un graphique. On peut superposer plusieurs courbes
de régression sur le même graphe en les séparant par un ; en ligne de com-
mande.

Ainsi pour afficher la droite de régression linéaire correspondant aux données X=[1,2,3,4,5]
et Y=[3,5,6,8,11], tapez les deux commandes ci-dessus ou éditez une matrice
ayant 2 colonnes avec le raccourci shift-6 8. Puis shift-6 enter (ou menu log
puis sélectionnez la commande linear_regression_plot() complétez la com-
mande par X,Y) ou par le nom de variable de la matrice puis enter.

Remarque : si vos données sont dans une matrice m ayant 2 lignes au lieu de 2
colonnes, vous pouvez utiliser m^* pour transposer (en fait cela transconjugue, ce qui
est identique pour des données réelles).

7 Courbes et autres représentations graphiques
Depuis le catalogue, sélectionner le sous-menu Courbes (accès rapide par menu

7, ou shift-3 depuis le shell).
— plot(f(x),x=a..b) trace le graphe de f(x) pour x ∈ [a, b]. On peut spé-

cifier un pas de discrétisation avec xstep=, par exemple plot(x^2,x=-4..4,xstep=1)

19

x

 y

−4 −3 −2 −1 0 1 2 3 4

0

2

4

6

8

10

12

14

16

— LineTan(f(x),x,x0) trace la tangente au graphe de f(x) en x = x0.
— plotarea(f(x),x=a..b,n,methode) trace le graphe de f(x) pour x ∈

[a, b], et noircit une portion du plan qui approche l’aire sous la courbe, on peut
préciser une méthode d’intégration avec n subdivisions parmi rectangle_droit,
rectangle_gauche, trapezes, simpson (aller dans menu , Options
puis taper le début du nom de la méthode pour la saisir plus rapidement)

— plotseq(f(x),x=[u0,a,b]) graphe “en toile d’araignée” de la suite ré-
currente un+1 = f(un) de premier terme u0 donné. Par exemple si un+1 =√
2 + un, u0 = 6 avec une représentation sur [0, 7]

plotseq(sqrt(2+x),x=[6,0,7])

20

x

 y

0 1 2 3 4 5 6 7

−0.5

0

0.5

1

1.5

2

2.5

3

— plotparam([x(t),y(t)],t=tm..tM) courbe en paramétriques (x(t), y(t))
pour t ∈ [tm, tM]. On peut spécifier un pas de discrétisation avec tstep= par
exemple
plotparam([sin(2t),cos(3t)],t,0,2*pi)

21

x

 y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

— plotpolar(r(theta),theta=a..b) courbe en polaires r(θ) pour θ ∈
[a, b], par exemple
plotpolar(sin(3*theta),theta,0,2*pi)

22

x

 y

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

— plotlist(l) pour une liste l, trace la ligne polygonale reliant les points de
coordonnées (i, li) (indice i commençant à 0).
plotlist([X1,Y1],[X2,Y2],...) trace la ligne polygonale reliant les
points de coordonnées (Xi, Yi)

— scatterplot(X,Y), polygonscatterplot(X,Y) pour 2 listes X,Y
de même taille, trace un nuage de points ou une ligne polygonale reliant les
points de coordonnées (Xi, Yi)

— histogram(l,class_min,class_size) trace l’histogramme des don-
nées de la liste l avec comme largeur de classe class_size en commençant
à class_min. Par exemple, on peut tester la qualité du générateur aléatoire
avec
l:=ranv(500,normald,0,1); histogram(l,-4,0.25
); plot(normald(x),x,-4,4)

23

−4 −3 −2 −1 0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

— plotcontour(f(x,y),[x=xmin..xmax,y=ymin..ymax],[l0,l1,...])
trace les courbes de niveaux f(x, y) = l0, f(x, y) = l1,

— plotdensity(f(x,y),[x=xmin..xmax,y=ymin..ymax]) représen-
tation par niveaux de couleurs de la fonction de 2 variables x et y dans le rec-
tangle spécifié (par défaut entre -4 et 4).

— plotfield(f(t,y),[t=tmin..tmax,y=ymin..ymax]) trace le champ
des tangentes à l’équation différentielle y′ = f(t, y). On peut ajouter en der-
nier paramètre optionnel ,plotode=[t0,y0] pour tracer simultanément la
solution passant par la condition initiale y(t0) = y0. Exemple y′ = sin(ty) sur
l’intervalle [−3, 3] en temps et [−2, 2] en y

plotfield(sin(t*y),[t=-3..3,y=-3..3],plotode=
[0,1])

24

x

 y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

On peut aussi utiliser la commande plotode en-dehors d’une commande
plotfield.

On peut tracer simultanément plusieurs graphiques, il suffit de séparer les commandes
de tracé par ;

Le menu Options (menu ,) vous permet de spécifier certaines options graphiques :
— pour les couleurs, on utilise display=couleur, par exemple

plot(sin(x),display=red)

25

x

 y

−10 −5 0 5 10

−1

−0.5

0

0.5

1

— Pour changer l’épaisseur des segments (y compris les lignes polygonales utili-
sées pour tracer une courbe), utiliser display=line_width_2 à display=line_width_8.
Pour changer à la fois la couleur et l’épaisseur, additionnez les attributs, par
exemple : display=red+line_width_2

— Les cercles ainsi que les rectangles dont les bords sont parallèles aux axes
peuvent être remplis avec l’attribut display=filled (qui peut s’additionner
à d’autres attributs).

— Pour remplacer la fenêtre graphique calculée automatiquement par des valeurs
prédéfinies, utiliser la touche OPTN, sélectionner gl_x ou/et gl_y et indiquer
l’intervalle en x ou en y souhaité, la commande doit précd́er une commande de
tracé. Par exemple
gl_x=-2..2;gl_y=-1..4;plot(exp(x))

26

x

 y

−1.5 −1 −0.5 0 0.5 1 1.5 2

0

1

2

3

— Pour enlever les axes, sélectionner axes (axes=0). La commande doit précé-
der une commande de tracé.

Les versions récentes de χCAS permettent de représenter en 3d ou 4d des fonctions
de 2 variables à valeur réelle ou complexe, par exemple plot(x^2-y^2) pour repré-
senter la fonction de R2 → R ou plot((x+i*y)^2-9) pour représenter la fonction
de C → C qui à z associe z2 − 9. Dans ce dernier cas, le module est représenté selon
l’axe Oz et l’argument par une couleur de l’arc en ciel, de−π en bleu violet à 0 en vert
(en passant par jaune et orange) et de 0 à π en passant par cyan.

Pour préciser des options en 3d/4d, il faut utiliser la commande plotfunc, par
exemple
plotfunc((x+i*y)^3-1,[x=-2..2,y=-2..2],nstep=500)
pour tracer z → z3 − 1 depuis le carré du plan complexe centré en l’origine de coté 4,
avec une discrétisation utilisant 500 petits rectangles.

27

8 Géométrie analytique.
Les versions récentes de χCAS proposent une application de géométrie interactive

2d et 3d. L’application de géométrie permet de construire des figures dans le plan ou
dans l’espace, et de faire bouger un point et tout ce qui en dépend pour illustrer cer-
taines propriétés (géométrie dynamique). On peut faire des constructions de géométrie
euclidienne pure, mais aussi avec des graphes de fonction, des coniques, etc. L’appli-
cation possède deux “vues” : la vue graphique et la vue symbolique qui contient les
commandes Xcas permettant de créer la figure (la philosophie de cette application est
proche de celle du logiciel Geogebra, avec les commandes de Xcas).

Modes, vue graphique et symbolique.
Taper doc 1 pour afficher la liste des applications additionnelles, puis enter puis sé-
lectionnez soit une nouvelle figure 2d ou 3d soit une figure existante. Vous pouvez
aussi ouvrir l’application de géométrie depuis un graphe (par exemple après avoir tapé
plot(sin(x))) en tapant doc puis Sauvegarder figure.

Au lancement on est dans la vue graphique en mode repère, les touches de curseur
permettent de changer de point de vue. Pour changer le mode, utiliser la touche menu,
pour passer en vue symbolique et vice-versa taper enter. Par exemple tapez menu 3 pour
passer en mode point qui permet de construire des points en déplaçant le pointeur et
en tapant enter ou tapez menu 5 pour passer en mode triangle qui permet de construire
un triangle à partir de ses 3 sommets, on déplace le pointeur et on tape enter trois fois.
Pour déplacer le pointeur, utiliser les touches de déplacement, pour se déplacer plus
rapidement, faire shift touche de curseur. Si on est proche d’un point existant, son nom
apparait en bas. Pour déplacer le pointeur vers un point existant, vous pouvez aussi
taper le nom du point (par exemple A).

Le mode pointeur permet de sélectionner un point et de le déplacer pour observer
comment la construction varie, ce qui permet de mettre en évidence des propriétés de
la figure, par exemple concurrence de 3 droites.

Si vous tapez sur la touche Back depuis la vue graphique de l’application, vous
revenez au mode repère ou si vous y étiez vous passez en vue symbolique. Vous pouvez
ajouter des objets à la construction depuis cette vue, en mettant une commande par
ligne. Tapez ret pour passer à la ligne. Tapez enter pour revenir à la vue graphique. Dans
la vue symbolique, vous pouvez sauvegarder la construction géométrique au format
texte (avec une extension .py, même s’il ne s’agit pas d’un script Python). Tapez
Back pour quitter l’application de géométrie.

Lorsque vous quittez l’application de géométrie, la figure est automatiquement sau-
vegardée dans une variable Xcas qui a le même nom que celui du nom de fichier affiché
dans la vue symbolique. Vous pouvez purger la variable Xcas si vous voulez effacer la
figure de la session.

Exemple : cercle circonscrit.
Depuis le shell, taper doc 1 sélectionner nouvelle figure 2d et valider enter. Puis menu 5
Triangle, enter pour créer le premier sommet du triangle puis déplacer le pointeur avec
les touches de déplacement, enter pour créer le 2ème sommet du triangle, déplacer le
pointeur à nouveau et enter pour créer le triangle.

Version longue en construisant le centre : Taper menu 7, sélectionner 8 Mediatrice,
déplacer le pointeur de sorte que seul un segment du triangle soit sélectionné (affichage

28

en bas à droite perpen_bisector D5,D), taper enter pour créer la médiatrice du
segment, déplacer le curseur sur une autre arête du triangle et enter pour créer la 2ème
médiatrice, optionnellement sur le 3ème segment pour avoir les 3 médiatrices. Puis
menu 6 et 4 Intersection unique. Déplacer le curseur vers une des médiatrices, taper
enter puis vers une autre médiatrice, taper enter, ceci crée le centre du cercle circonscrit.
Pour tracer le cercle, taper menu 4, déplacer le curseur au centre du cercle (vous pouvez
utiliser les touches de déplacement ou juste taper H ou la bonne lettre si le centre du
cercle s’appelle autrement), puis enter puis sur un des sommets et enter.

Version courte avec la commande circonscrit : taper menu 9 puis circonscrit
puis sélectionner chaque sommet avec enter (A enter B enter C enter, remplacez si
nécessaire A, B, C par les lettres du sommet du triangle).

Version en vue symbolique : taper Back puis en fin de script sur une ligne vide
(taper ret s’il faut en créer une), taper
c:=circonscrit(A,B,C) enter

Exemple 3d : bac septembre 2019
Taper doc enter pour lancer l’application de géométrie puis nouvelle figure 3d. Puis
Back ou enter pour passer en vue symbolique. Puis c = puis menu flèche haut deux fois
pour sélectionner 3D puis enter puis 5 pour cube puis menu (aide), qui explique que les
2 premiers arguments de cube sont les sommets d’une arête, le troisième est un point
d’un plan d’une face. Le premier exemple nous convient ici exactement, on tape Ans
et on obtient c=cube([0,0,0],[1,0,0],[0,1,0]) On tape enter pour voir
le cube puis + plusieurs fois pour zoomer et enter pour revenir à la vue symbolique.
Vous pouvez sauvegarder à tout moment la construction au format texte depuis le menu
doc. On passe à la ligne en tapant shift enter. Puis on définit les sommets du cube en
tapant A,B,C,D,E,F,G,H:= (taper A , B etc.), puis menu et flèche vers le haut
3 fois pour sélectionner Géometrie puis flèche vers le haut 4 fois pour sélectionner
sommets enter et mettre c en argument sommets(c). Taper enter pour visualiser
puis enter à nouveau pour revenir en vue symbolique. Passer à la ligne avec ret puis
créer le plan ABG en tapant P = puis shift 2 pour ouvrir le menu rapide lines et 8
pour saisir plane. La commande plan prend en arguments 3 points pour définir le plan
(on peut aussi donner une équation cartésienne, ici A,B,G, P=plan(A,B,G, on va
lui ajouter une couleur avec le menu rapide shift 4 disp display=filled+green,
vérifier en visualisant avec enter enter. On passe à la ligne (ret) et on crée le segment
DE S = shift 2 sélectionner la commande segment avec enter puis D,E et shift 4 pour
lui donner une couleur S=segment(D,E,color=cyan) (on pouvait aussi créer le
segment depuis la vue graphique en mode Lignes mais déplacer le pointeur est un peu
lent). La construction est donc la suivante :

c=cube([0,0,0],[1,0,0],[0,1,0])
A,B,C,D,E,F,G,H=sommets(c)
P=plan(A,B,G,display=filled+green)
S=segment(D,E,display=cyan)

Vous pouvez taper enter pour la visualiser et utiliser les flèches de déplacement pour
changer de point de vue. Taper enter ou Back pour revenir en vue symbolique. Pour
quitter l’application taper Back. Taper F1 pour sauvegarder la figure si nécessaire.
Vous pouvez depuis le shell de KhiCAS accéder à de nombreuses informations de

29

géométrie analytique, par exemple equation(P) (menu menu Géométrie) vous don-
nera l’équation cartésienne du plan P ou is_orthogonal(P,S) (menu Géométrie)
vous confirmera que le plan P est orthogonal au segment S.

9 Unités et constantes physiques.
Le menu menu, constantes physiques (raccourci menu pi) et unités physiques

(raccourci menu sqrt) affiche
— des commandes de gestion d’unité

mksa pour convertir vers les unités fondementales du système international
usimplify pour simplifier en utilisant une seule unité lorsque c’est possible,
ou un produit de deux.
ufactor pour forcer l’écriture d’une unité en fonction d’une autre
=> (raccourci touche sto) pour convertir entre deux unités compatibles

— une liste non exhaustive d’unités physiques
— une liste de constantes physiques fondementales.

Exemples :
60_(km/h) => _(m/s)
mksa(_hbar_)
usimplify(1_W*1_s)
ufactor(1_W,1_J)

10 L’éditeur d’expressions
Lorsqu’un calcul renvoie une expression, elle est affichée en plein écran dans l’édi-

teur d’expression 2d. Depuis l’historique des calculs, si le niveau sélectionné est une
expression, l’appui sur shift-5 (2d) affiche l’expression dans l’éditeur 2d. En ligne de
commande, l’appui sur shift-5 ouvre aussi l’éditeur 2d, soit avec 0 si la ligne de com-
mande était vide, ou avec le contenu de la ligne de commande si celle-ci est syntaxi-
quement correcte.

Lorsque l’éditeur 2d est ouvert, l’expression est affichée en plein écran et une partie
de l’expression est sélectionnée. On peut alors agir sur la sélection en exécutant des
commandes saisies via les menus ou le clavier, on peut aussi éditer la sélection (en
mode de saisie 1d). Ceci permet de retravailler des sous-expressions ou d’éditer une
expression en écriture naturelle.

Vous pouvez annuler la dernière modification effectuée en tapant sur shift-3 (undo).
Taper sur la touche enter pour quitter l’éditeur 2d et copier l’expression en ligne de

commande, taper esc pour quitter sans recopier l’expression.
Exemple 1 : nous allons saisir

lim
x→0

sin(x)

x

Depuis une ligne de commande vide, taper shift-5 (2d), vous devez voir 0 sélectionné.
Tapez sur la touche x et enter, maintenant c’est x qui est en surbrillance. Tapez sur la

30

touche trig (trig renvoie sin, shift trig cos et ctrl trig tan), c’est sin(x) qui est en sur-
brillance. Tapez sur la touche de division (au-dessus de -), vous devez voir sin(x)

0 avec
0 en surbrillance, tapez x puis enter, vous devez voir sin(x)

x avec x au dénominateur en
surbrillance. Tapez sur le curseur flèche vers le haut pour mettre sin(x)

x en surbrillance,
puis shift-2 4 (pour limit). L’expression est correcte, vous pouvez taper enter pour la
recopier en ligne de commande et enter à nouveau pour exécuter le calcul. Si on avait
voulu une limite en +∞, il aurait fallu déplacer la sélection avec curseur vers la droite,
puis faire shift-1 7 (oo) enter.

Exemple 2 : nous allons saisir ∫ +∞

0

1

x4 + 1
dx

Depuis une ligne de commande vide, taper shift-5 (2d), puis shift-2 3 (integrate), vous
devez voir ∫ 1

0

0 dx

avec x sélectionné. Il faut donc changer le 1 de la borne supérieure et le 0 à intégrer.
Pour modifier le 0, curseur vers la gauche pour le sélectionner puis 1/(x^4+1) enter,
puis curseur vers la gauche shift-1 7 enter. Taper sur enter pour recopier vers la ligne de
commande puis enter pour effectuer le calcul, le résultat s’affiche dans l’éditeur 2d, en-
ter quitte l’éditeur avec dans l’historique l’intégrale et sa valeur (en syntaxe algébrique
1d).

Exemple 3 : nous allons calculer et simplifier∫
1

x4 + 1
dx

Depuis une ligne de commande vide, taper shift-5 (2d), puis shift-2 3 (integrate), vous
devez voir ∫ 1

0

0 dx

Déplacez le curseur sur le 0 de la borne inférieure de l’intégrale et tapez sur la touche
DEL, vous devez voir ∫

0 dx

avec le tout sélectionné. Utilisez le curseur vers le bas pour sélectionner 0 et tapez
1/(x^4+1) enter puis enter pour recopier en ligne de commande puis enter pour
exécuter le calcul, le résultat s’affiche maintenant dans l’éditeur 2d.
On peut alors sélectionner avec les touches du curseur par exemple l’argument d’un
des arctangentes et exécuter shift-1 enter (simplify) pour effectuer une simplification
partielle du résultat, puis recommencer avec l’autre arctangente.
On peut simplifier encore plus, en rassemblant les logarithmes. Pour cela il faut d’abord
échanger deux des arguments de la somme. Sélectionnez un des logarithmes avec des
déplacements du curseur, puis tapez shift-curseur droit ou gauche, cela échange l’argu-
ment sélectionné avec son frère de droite ou de gauche. Tapez ensuite ctrl curseur vers

31

la droite ou vers la gauche, ceci augmente la sélection en ajoutant le frère de droite
ou de gauche. Une fois les deux logarithmes sélectionnés, taper shift-1 2 enter (fac-
tor), puis descendez la sélection sur la somme ou différence de logarithmes, allez dans
le menu menu puis enter (Tout), tapez les lettres l, n, c ce qui déplace à la première
commande commençant par lnc, sélectionnez lncollect, validez et tapez enfin sur
enter (eval).

11 Sessions de calculs

11.1 Edition de l’historique.
En utilisant la touche curseur vers le haut/bas, on se déplace dans l’historique des

calculs, le niveau courant est en surbrillance.
Pour modifier l’ordre des niveaux dans l’historique des calculs, tapez ctrl curseur

vers le haut ou vers le bas. Pour effacer un niveau, appuyez sur la touche DEL (le
niveau est recopié dans le presse-papiers).

Pour modifier un niveau existant, on tape sur shift-5 ou sur shift-4. Dans le premier
cas, c’est l’éditeur 2d qui est appelé si le niveau est une expression, dans le deuxième
cas, c’est l’éditeur texte qui est appelé. Taper esc pour annuler les modifications ou
enter pour valider. Si les modifications sont validées, les lignes de commande situées
en-dessous de la ligne modifiée seront automatiquement calculées, tenant compte des
modifications, par exemple si vous modifiez un niveau comme A:=1, les lignes situées
en-dessous dépendant de A seront actualisées.

Ce processus peut être automatisé en utilisant un curseur, que l’on peut créer avec
un assistant, depuis le menu doc, Parameter. Une fois créé, vous pouvez modifier un
curseur en tapant sur les touches + ou - lorsque le niveau contenant la commande
assume ou parameter est sélectionné (tapez * ou / pour une modification plus
rapide).

11.2 Variables
En appuyant sur la touche var vous affichez la liste des variables qui ont une

valeur, ainsi que des commandes de gestion de variables. Déplacez le curseur vers
une variable puis enter pour la recopier en ligne de commande, DEL copie en ligne de
commande la commande d’effacement de la variable (confirmez ensuite avec enter). La
commande restart permet d’effacer toutes les variables. La commande assume
permet de faire une hypothèse sur une variable, par exemple assume(x>5) (pour
saisir >, taper ctrl +)

11.3 Sauvegarde et compatibilité
Vous pouvez sauvegarder une session en tapant sur ctrl save ou doc 2. Vous pouvez

ouvrir une session en tapant sur shift save ou doc 4. Les sessions sont sauvegardées
avec un nom de fichier terminant par .xw.tns. Vous pouvez les ouvrir sur votre or-
dinateur avec Xcas ou Xcas pour Firefox. Réciproquement, doc Fich, Exporter comme

32

permet de sauvegarder une session dans ce format, ou dans un autre format pour utiliser
votre session sur une calculatrice χCAS-compatible. Dans Xcas pour Firefox, il faut
sélectionner dans les paramètres Nspire CX comme calculatrice puis exporter.

N.B. : vous pouvez sauvegarder le contenu de l’éditeur de script indépendamment
de la session, les scripts ont un nom de fichier terminant par .py.tns. Il suffit de
renommer le script en enlevant le .tns pour utiliser ce script avec n’importe quel in-
terpréteur compatible Python, par exemple une calculatrice d’un autre constructeur pro-
posant un interpréteur MicroPython. Réciproquement, vous pouvez importer un script
Python en faisant une copie du fichier en ajoutant .tns au nom de fichier et en le
transférant sur le TI Nspire CX. Vous pouvez alors l’ouvrir dans l’éditeur de script.

12 Programmation
L’environnement de programmation de χcas est assez complet : un éditeur, l’in-

terpréteur de Xcas avec toutes ses commandes (compatibilité partielle avec les mo-
dules Python math, cmath, random, turtle, numpy, scipy, giacpy, matplotlib et un sur-
ensemble du module kandinsky), avec un outil de mise au point permttant l’exécution
en pas à pas. Ce même environnement peut utiliser l’interpréteur MicroPython au lieu
de Xcas (cf. section 13).

Vous pouvez programmer en utilisant les structures de commande en français de
Xcas ou en utilisant la compatibilité de syntaxe Python. Les programmes très courts
(en une ligne) peuvent être saisis directement en ligne de commande. Les programmes
plus longs ou que l’on souhaite sauvegarder seront saisis dans l’éditeur de programmes
sur la calculatrice, ou bien transférés depuis un PC ou une autre calculatrice.

Des programmes sont installés dans le répertoire Xcas. Vous pouvez les visualiser
depuis le shell en tapant doc 4 (Charger), et les exécuter depuis le shell en tapant ctrl
r.

12.1 Prise en main (programmation)
Un premier exemple en ligne de commande :

une fonction définie par une expression algébrique. On saisit nom_fonction(parametres):=expression
Par exemple, pour définir le périmètre d’un cercle de rayon r, on peut taper

peri(r):=2*pi*r

r 7→ 2πr

(pour taper :, faire ctrl puis ,) puis on peut calculer peri(1)

2π

.
Autre exemple, pour calculer l’intervalle de confiance de seconde connaissant

une fréquence p et un effectif n, on tape

33

F(P,N):=[P-1/sqrt(N),P+1/sqrt(N)]

(P,N) 7→
[
P − 1√

N
P + 1√

N

]
puis on teste F(0.4,30)

[0.217425814165, 0.582574185835]

Autre exemple : avec la tortue de Xcas
La tortue de Xcas est un petit robot qui se déplace selon des ordres qui lui sont donnés
en laissant une trace de son passage. Les commandes de la tortue sont accessibles de-
puis le dernier item du menu menu, par le raccourci x2. Saisir la commande avance
dans ce menu puis valider, vous devez voir la tortue (symbolisée par un triangle) avan-
cer de 10 pixels. Taper esc pour revenir en ligne de commande. Saisir la commande
tourne_gauche et valider, la tortue a tourné de 90 degrés. Répéter 3 fois ces deux
commandes pour afficher un carré.
Pour effacer le dessin et ramener la tortue à l’origine, saisir la commande efface.
Pour faire des dessins tortue, il est conseillé d’utiliser l’éditeur de programmes (cf.
ci-dessous).

Autre exemple : une boucle “oneliner” en syntaxe Xcas.
Ouvrez le menu Programmes (menu cos), puis sélectionnez l’exemple de pour (cur-
seur sur pour puis Ans)

pour j de 1 jusque 10 faire print(j,j^2); fpour;

0

tapez sur enter, vous devez voir les carrés des entiers de 1 à 10.
Exercice : faire faire un carré à la tortue en utilisant une boucle.
Utilisation de l’éditeur

Modifions cet exemple pour faire afficher les carrés de 1 à n en utilisant la syntaxe
compatible Python et l’éditeur de programmes. Tapez sur esc pour passer du shell à
l’éditeur de programmes. Si on vous demande programme ou Tortue faites enter. Ceci
ouvre l’éditeur avec une maquette de fonction def f(x): Vérifiez que la syntaxe
Python est activée (menu doc), sinon activez-la (8). Remplacez x par n, puis déplacez
le curseur en fin de ligne et passez à la ligne (touche à la droite de la touche U). Tapez
Shift-2 puis enter (for), placez un j entre for et in range(puis un n entre
les parenthèses de range(). À la ligne suivante, tapez shift-3 7 (print) et validez
(enter), puis tapez j,j^2). Vous devriez avoir le texte source suivant :

def f(n):
for j in range(1,n+1):

print(j,j^2)
return x

Remplacez x par n dans return (ou effacez la ligne). N.B. : pour la puissance, on
peut utiliser ^ ou ** dans KhiCAS (il faut utiliser ** en Python).

34

Maintenant, tapez enter. Si tout va bien, vous devez voir Success dans la ligne
d’état. Sinon, le numéro de ligne de la première erreur est indiqué ainsi que le mot qui
a provoqué l’erreur. Le curseur est positionné sur la ligne où l’erreur a été détectée (il
peut arriver que l’erreur soit située avant mais détectée un peu plus loin seulement).
Si vous utilisez la syntaxe en Python, notez que les structures de programmation sont
traduites en langage Xcas, les erreurs affichées le sont par rapport à cette traduction
(donc des mots-clefs de fin de structure comme end peuvent avoir été ajoutées).

Si le programme est syntaxiquement correct, vous pouvez le sauvegarder depuis le
menu doc. Pour l’exécuter, revenez à la ligne de commande en tapant la touche esc,
tapez par exemple f(10), vous devriez voir s’afficher les carrés de 1 à 10.

Attention dans l’éditeur de programmes, l’appui sur la touche enter interprète le
contenu de l’éditeur. Pour passer à la ligne suivante, il faut taper sur la touche de vali-
dation (à droite de la touche u).

3ième exemple : Calcul de l’intervalle de confiance de terminale
En syntaxe Xcas. On peut le saisir en ligne de commande

F(P,N):=[P-1.96*sqrt(P*(1-P)/N),P+1.96*sqrt
(P*(1-P)/N)]

(P,N) 7→
[
P − 1.96

√
P 1−P

N P + 1.96
√
P 1−P

N

]
On peut éviter les calculs redondants en utilisant une variable locale (utiliser menu Pro-
grammes pour saisir fonction, local, return et ffonction)

fonction F(P,N)
local D;
D:=1.96*sqrt(P*(1-P)/N);
return [P-D,P+D];

ffonction;

Exercice Créez un fichier carre.py contenant un script pour afficher un carré
avec la tortue. Créez un fichier carren.py pour afficher un carré de n pixels, en
utilisant une fonction d’argument n et l’instruction repete.

Solution Depuis l’éditeur de script, faire doc 5 (Effacer). Puis shift-4 efface.
Ajouter 4 fois avance; tourne_gauche;. Appuyer sur enter pour tester. Sauve-
gardez (doc 3 Sauvegarder comme).

Effacer à nouveau (doc 5 effacer) Puis shift-4 efface. Ajouter avant la ligne
efface

def f(n):
for j in range(4):

avance(n)
tourne_gauche

puis après la ligne efface; tapez par exemple f(40) puis enter. Ensuite faire doc
3 (Sauvegardez comme).

Un exemple de fonction non algébrique : le calcul du PGCD de 2 entiers.
Utiliser enter pour passer à la ligne. En syntaxe Xcas

35

fonction pgcd(a,b)
tantque b!=0 faire

a,b:=b,irem(a,b);
ftantque;
return a;

ffonction

On vérifie pgcd(12345,3425)

5

. Le même en syntaxe Python

def pgcd(a,b):
while b!=0:

a,b=b,a
return a

Mise au point
La commande debug permet d’exécuter une fonction en mode pas-à-pas, i.e. visuali-
ser l’évolution des variables instruction par instruction, par exemple
debug(pgcd(12345,3425))

12.2 Quelques exemples
Le répertoire Xcas de l’archive contient quelques exemples de programmes (avec

fréquemment une représentation graphique) dont :
— fréquence dans un échantillon, intervalle de fluctuations (freq.xw)
— le paradoxe du duc de Toscane (toscane.xw)
— résolution d’équation du second degré (deg2.xw)
— dichotomie (dicho.xw)
— méthode des rectangles (integr.xw),
— fractale de Mandelbrot (mandel.py)
— un benchmark utilisé par tiplanet pour mesurer la vitesse de l’interpréteur (qcc.xw)

12.3 Commandes utilisables
Contrairement aux adaptations de MicroPython proposées par les constructeurs

(dont celui de la TI Nspire), la programmation en (simili-)Python dans KhiCAS n’est
pas une application indépendante. Vous pouvez donc utiliser tous les types de Xcas
(par exemple les rationnels) et appliquer toutes les commandes de Xcas dans vos pro-
grammes. Ceci correspond plus ou moins à un environnement Python avec les mo-
dules math, cmath, random (plus complet que le module urandom fourni par les
constructeurs), scipy, numpy, un petit module de graphiques pixelisé (set_pixel(x,y,c),
set_pixel() pour synchroniser l’affichage, clear(), draw_line(x1,y1,x2,y2,c),
draw_polygon([[x1,y1],[x2,y2],...],c), draw_rectangle(x,y,w,h,c),
draw_circle(x,y,r,c), la couleur+epaisseur+remplissage c est un paramètre

36

optionnel, draw_arc(x,y,rx,ry,t1,t2,c) permet de tracer un arc d’ellipse).
et pour remplacer matplotlib on peut utiliser les commande graphiques dans un
repère de χCAS (point, line, segment, circle, barplot, histogram et les
commandes plot...). De plus, vous pouvez travailler avec des expressions et faire
du calcul formel dessus. Pour la liste complète des commandes et une présentation
détaillée, on renvoie à la documentation de Xcas.

13 Interpréteur MicroPython intégré
χCAS est maintenant fourni avec son propre interpréteur MicroPython (qui n’est

pas identique à celui fourni par Numworks). Pour passer dans χCAS de l’interpréteur
Xcas à MicroPython et réciproquement vous pouvez taper la commande python ou
xcas dans le shell sur une ligne vide. Ces commandes sont accessibles dans le menu
rapide shift).

Attention, si vous lancez MicroPython après avoir travaillé avec Xcas ou/et avec le
tableur, il peut ne pas y avoir assez de mémoire pour le tas MicroPython, dans ce cas
vous risquez de perdre votre session de travail, pensez à la sauvegarder. Par défaut, 40K
sont réservés pour MicroPython. Vous pouvez modifier cette valeur jusqu’à 64K dans
la configuration (touche Home puis touche ln). Si vous choisissez une valeur haute, il
peut être nécessaire de quitter χCAS et de le réouvrir pour que le tas puisse être alloué
dans une zone mémoire contiguë (problème de fragmentation du tas sinon).

Remarque : lorsque l’interpréteur Xcas est actif, si vous passez en argument à la
commande xcas ou python le nom de variable d’une fonction que vous avez pro-
grammée, cela affiche son texte source sous forme d’une chaine de caractères en syn-
taxe Xcas ou Python. Vous pouvez donc programmer en syntaxe Xcas et traduire en-
suite en Python si vous devez vous conformer à des règles qui imposent ce langage.

13.1 Les modules standard : math, cmath, random
Ce sont les modules natifs fournis par MicroPython (urandom a été renommé

random), et qui sont conforme au standard. D’autres modules MicroPython standard
qui ne sont pas destinés à faire des maths sont disponibles. On peut taper halp(’modules’)
pour voir la liste des modules disponibles. Cf l’aide en ligne de MicroPython 8.

13.2 Le module cas
Il donne accès depuis MicroPython aux commandes natives de Xcas. Il contient

une seule commande caseval, qui prend en argument soit une chaine de caractères
qui sera évaluée par l’interpréteur de Xcas, soit une chaine de caractères (contenant
le nom de commande à exécuter) puis des arguments de type quelconque (représentant
les arguments). Le résultat est une chaine de caractères. On peut bien sur appeler eval
pour transformer la valeur de retour en objet Python. Exemples :

caseval("sin",0)

8. https://docs.micropython.org/

37

caseval("sin(0)")
caseval("integrate","1/x","x")
caseval("integrate","1/x","x",2,3)
a=[1,2,3]
caseval("a:=",a)
caseval("a")

Note : caseval possède deux synonymes xcas et eval_expr.

13.3 Le module graphic
Il s’agit d’un module natif MicroPython qui exporte de Xcas des fonctions de tracé

pixelisés. Une partie des commandes est accessible depuis le menu rapide shift . Ce
module a des synonymes, kandinsky et casioplot afin de faciliter l’utilisation
de scripts Python pour calculatrices Numworks (Epsilon) et Casio.

13.4 Le module matplotl
Il s’agit d’un module natif MicroPython qui exporte de Xcas des fonctions de tracé

repéré et vise à une certaine compatibilité avec le module matplotlib (ou un de ses
sous-modules) sur PC. Une partie des commandes est accessible depuis le menu rapide
shift 0.

13.5 Le module arit
C’est un module natif qui exporte de Xcas des fonctions d’arithmétique entière : test

de primalité et prochain nombre premier (par Miller-Rabin), factorisation d’entiers pas
trop gros (détection par Pollard-rho du plus petit facteur premier, donc jusqu’à environ
9 chiffres), pgcd et identité de Bèzout, indicatrice d’Euler (si on sait factoriser). J’y ai
aussi inclus deux fonctions de conversion liste vers chaine de caractères pour faciliter
l’enseignement d’un peu de cryptographie.

13.6 Le module linalg
Il permet de manipuler les listes comme des vecteurs et les listes de listes comme

des matrices. Contrairement à Xcas, Python n’est pas un langage spécifiquement adapté
aux maths, il faut utiliser des commandes préfixées add, sub, mul pour effectuer
les opérations arithmétiques de base + - * sur les vecteurs et matrices représentés
par des listes.

Le module linalg est un module natif, qui utilise Xcas pour effectuer la quasi-
totalité des calculs.

13.7 Le module numpy
C’est une surcouche du module linalg qui définit une classe array pour repré-

senter les vecteurs et les matrices. On peut alors utiliser + - * pour faire les opéra-
tions de base sur vecteurs et matrices.

38

Le module numpy n’est pas un module natif, c’est un texte source écrit en Py-
thon. Son importation consomme donc de la mémoire RAM. Vous pouvez écrire votre
propre version de numpy.py et la stocker dans le scriptstore, elle prendra alors la pré-
cédence sur la version utilisée par défaut. Cette dernière vise à assurer un minimum de
compatibilité avec le module du même nom sur PC. Bien que non natif, ce module est
disponible en mode examen (le texte source par défaut est intégré au code source de
l’interpréteur MicroPython).

import linalg
import math
class array:

def __init__(self, a):
self.a = a

def __add__(self, other):
return array(linalg.add(self.a , other.a))

def __sub__(self, other):
return array(linalg.sub(self.a , other.a))

def __mul__(self, other):
if type(self)==array:

if type(other)==array:
return array(linalg.mul(self.a , other.a))

return array(linalg.mul(self.a,other))
return array(linalg.mul(self,other.a))

def __rmul__(self, other):
if type(self)==array:

if type(other)==array:
return array(linalg.mul(self.a , other.a))

return array(linalg.mul(self.a,other))
return array(linalg.mul(self,other.a))

def __matmul__(self, other):
return __mul(self,other)

def __getitem__(self,key):
r=(self.a)[key]
if type(r)==list or type(r)==tuple:

return array(r)
return r

def __setitem__(self, key, value):
if (type(value)==array):

(self.a)[key]=value.a

39

else:
(self.a)[key]=value

return None

def __len__(self):
return len(self.a)

def __str__(self):
return ’array(’+str(self.a)+’)’

def __repr__(self):
return ’array(’+str(self.a)+’)’

def __neg__(self):
return array(-self.a)

def __pos__(self):
return self

def __abs__(self):
return array(linalg.abs(self.a))

def __round__(self):
return array(linalg.apply(round,self.a,linalg.matrix))

def __trunc__(self):
return array(linalg.apply(trunc,self.a,linalg.matrix))

def __floor__(self):
return array(linalg.apply(floor,self.a,linalg.matrix))

def __ceil__(self):
return array(linalg.apply(ceil,self.a,linalg.matrix))

def T(self):
return array(linalg.transpose(self.a))

def real(x):
if type(x)==array:

return array(linalg.re(x.a))
return x.real

def imag(x):
if type(x)==array:

return array(linalg.im(x.a))
return x.imag

40

def conj(x):
if type(x)==array:

return array(linalg.conj(x.a))
return linalg.conj(x)

def sin(x):
if type(x)==array:

return array(linalg.apply(math.sin,x.a,linalg.matrix))
return math.sin(x)

def cos(x):
if type(x)==array:

return array(linalg.apply(math.cos,x.a,linalg.matrix))
return math.cos(x)

def tan(x):
if type(x)==array:

return array(linalg.apply(math.tan,x.a,linalg.matrix))
return math.tan(x)

def asin(x):
if type(x)==array:

return array(linalg.apply(math.asin,x.a,linalg.matrix))
return math.asin(x)

def acos(x):
if type(x)==array:

return array(linalg.apply(math.acos,x.a,linalg.matrix))
return math.acos(x)

def atan(x):
if type(x)==array:

return array(linalg.apply(math.atan,x.a,linalg.matrix))
return math.atan(x)

def sinh(x):
if type(x)==array:

return array(linalg.apply(math.sinh,x.a,linalg.matrix))
return math.sinh(x)

def cosh(x):
if type(x)==array:

return array(linalg.apply(math.cosh,x.a,linalg.matrix))
return math.cosh(x)

41

def tanh(x):
if type(x)==array:

return array(linalg.apply(math.tanh,x.a,linalg.matrix))
return math.tanh(x)

def exp(x):
if type(x)==array:

return array(linalg.apply(math.exp,x.a,linalg.matrix))
return math.exp(x)

def log(x):
if type(x)==array:

return array(linalg.apply(math.log,x.a,linalg.matrix))
return math.log(x)

def size(x):
if type(x)==array:

return linalg.size(x.a)
return linalg.size(x)

def shape(x):
if type(x)==array:

return linalg.shape(x.a)

def dot(a,b):
return a*b

def transpose(a):
if type(x)==array:

return array(linalg.transpose(x.a))

def trn(a):
if type(x)==array:

return array(linalg.conj(linalg.transpose(x.a)))
return linalg.conj(linalg.transpose(x.a))

def zeros(n,m=0):
return array(linalg.zeros(n,m))

def ones(n,m=0):
return array(linalg.ones(n,m))

def eye(n):
return array(linalg.eye(n))

def det(x):

42

if type(x)==array:
return linalg.det(x.a)

return linalg.det(x)

def inv(x):
if type(x)==array:

return array(linalg.inv(x.a))
return linalg.inv(x)

def solve(a,b):
if type(a)==array:

if type(b)==array:
return array(linalg.solve(a.a,b.a))

return array(linalg.solve(a.a,b))
if type(b)==array:

return array(linalg.solve(a,b.a))
return linalg.solve(a,b)

def eig(a):
if type(a)==array:

r=linalg.eig(a.a)
return array(r[0]),array(r[1])

return linalg.eig(a)

def linspace(a,b,c):
return array(linalg.linspace(a,b,c))

def arange(a,b,c=1):
return array(linalg.arange(a,b,c))

def reshape(a,n,m=0):
if type(n)==tuple:

m=n[1]
n=n[0]

if type(a)==array:
return array(linalg.matrix(n,m,a.a))

return linalg.matrix(n,m,a)

14 Applications additionnelles.
Accessibles par le menu doc 1 ou le raccourci clavier shift-ANS. Il y a actuel-

lement la géométrie, le tableur, le tableau périodique des éléments (d’après Maxime
Friess), et des exemples d’addin (dont le code source peut servir de modèle aux pro-
grammeurs expérimentés souhaitant programmer des addins pour χCAS) : une appli-
cation finance, la suite de Syracuse (très simple), la fractale de Mandelbrot, un jeu de

43

mastermind (qui peut aussi servir de patience),

15 Raccourcis claviers.
— la touche de validation à droite de la touche u n’a pas toujours la même signi-

fication que la touche enter, en particulier dans l’éditeur de programmes elle
permet de passer à la ligne et dans l’éditeur d’expressions elle évalue la sélec-
tion

— la touche trig et ses shift/ctrl donnent accès aux fonctions sin, cos, tan
— on peut taper ctrl-* pour saisir " et shift-* pour saisir ’
— le caractère \ est accessible via ctrl-/, % par shift-/.
— ; et : sont en shift/ctrl de ,
— shift-1 à shift-6 : selon le mode (Xcas ou Python) voir les légendes
— mode Xcas : shift-7 matrices, 8 complexes, 9 arithmétique, 0 proba et autres, .

réels, (-) polynomes, (listes,) programmation
— mode Python : shift-7 et 8 matrices, 9 arithmétique, 0 graphes repérés, . graphes

pixelisés, (-) couleurs, (listes,) programmation
— changement d’interpréteur : shift) 8
— => suivi d’une unité physique effectue une conversion d’unité, => suivi d’une

fonction permet d’exécuter des actions :
=>* écriture sous forme de produit (pour une unité, écriture en utilisant les uni-
tés fondementales du système MKSA),
=>+ écriture sous forme de somme (pour une unité, écriture sous forme le plus
simple possible),
=>/ écriture sous forme de quotient,
=>sin, =>cos, =>tan conversion vers des sinus, cosinus ou tangentes.
=>, permet de chronométrer une évaluation,

— 16=>=> écrit les entiers qui suivent en base 16, 10=>=> en base 10, 8=>=>
en base 8

— ctrl puis p programmation,
— ctrl puis o donne accès au menu d’options
— ctrl suivi de R dans le shell permet de ré-exécuter la session actuelle (run)
— ctrl suivi de S dans le shell permet d’accéder à la configuration (setup)
— ctrl suivi de Z permet en général d’annuler la dernière modification
Dans l’éditeur de programmes :
— touches curseur shiftées : déplacement en début/fin de ligne/fichier.
— ctrl suivi de C permet de débuter une sélection, refaire ctrl puis C pour copier,

ctrl puis X ou del pour couper, ctrl puis V pour coller
— enter : si une recherche/remplacement de mot est active (après avoir fait menu

6), recherche l’occurence suivante d’un mot. Sinon, passe à la ligne.
— DEL efface le caractère précédent ou la sélection.
— ans (shift (-)) : bascule entre l’éditeur et la figure tortue
— esc : quitte l’éditeur et revient en ligne de commandes. On peut revenir ensuite

à l’éditeur en tapant à nouveau esc.

44

16 Extinction, reset, horloge.
Comme tout logiciel, χCAS n’est pas exempt de bugs. Si un calcul bloque, com-

mencez par essayer de l’interrompre en appuyant sur la touche ON. Si cela ne suffit pas,
il faut se résoudre à appuyer sur le bouton RESET à l’arrière de la calculatrice. Pour
pouvoir relancer χCAS, il faut au préalable réactiver ndless (depuis 2. Mes documents
puis dans le répertoire ndless).

Pour remettre à l’heure l’horloge interne de la calculatrice qui est affichée dans le
shell, connectez votre calculatrice avec votre ordinateur ou tapez une commande du
type hh,mm=>, par exemple 16,05=>, pour 16h05.

Sur les modèles CX uniquement, le rétro-éclairage de la calculatrice s’éteint auto-
matiquement au bout de quelques dizaines de secondes si on ne fait rien, il suffit de
taper sur ON pour rallumer. On peut aussi faire ctrl ON pour forcer l’extinction du
rétro-éclairage. Attention, il ne s’agit pas d’une vraie extinction de la calculatrice (il
n’y a pas assez d’informations disponibles sur le matériel de Texas Instruments pour
le faire). Si vous voulez vraiment éteindre la calculatrice, il faut quitter χCAS en ta-
pant autant de fois que nécessaire la touche doc (entre 2 et 4 fois). Pour éviter une
décharge trop rapide de la batterie, sur les nspire CX, χCAS se quitte de lui-même au
bout de 2 heures d’inactivité (en sauvegardant la session courante sous le nom habituel
session.xw.tns). La calculatrice se rallume alors brièvement avant de s’éteindre
réellement.

En cas d’inactivité prolongée de plusieurs jours, la calculatrice reboote quand on la
rallume, il faut alors reactiver ndless avant de pouvoir utiliser χCAS.

17 Copyright, licences et remerciements
— Giac et χCAS, noyau de calcul (c) B. Parisse et R. De Graeve, 2019. Les calculs

en entiers sont effectués avec GMP 9, les flottants multipécision avec MPFR 10,
l’arithmétique d’intervalle avec MPFI 11

— Interface de χCAS adaptée par B. Parisse à partir de l’interface utilisateur du
code source d’Eigenmath créée par Gabriel Maia et de l’interface utilisateur de
Xcas.
License d’utilisation de χCAS : GPL2. (voir le détail des conditions dans le
fichier LICENSE.GPL2 12 ou sur la page GPL2 13 du site de la Free Software
Foundation).

— Remerciements à Fabian Vogt pour firebird-emu, ndless. Remerciements à toute
l’équipe de ndless. Remerciement à l’équipe de tiplanet, en particulier Xa-
vier Andréani, Lionel Debroux et Adrien Bertrand, pour le forum de discus-
sion et tout le travail de mise en valeur de χcas (stockages d’archives, articles,
concours).

9. https://gmplib.org/
10. https://www.mpfr.org/
11. https://gforge.inria.fr/projects/mpfi/
12. https://www-fourier.ujf-grenoble.fr/~parisse/LICENSE.GPL2
13. https://www.gnu.org/licenses/old-licenses/gpl-2.0.fr.html

45

— le tableau périodique des éléments est un portage de l’application de Maxime
Friess 14 avec son autorisation de diffusion sous licence GPL.

18 Développement en C++ avec χCAS et Ndless
Il faut tout d’abord installer le SDK de ndless 15, sous linux par la commande

git clone --recursive https://github.com/ndless-nspire/Ndless.git
Puis il faut le compiler, ce qui prend une à plusieurs heures selon la puissance de l’or-
dinateur :

cd Ndless/ndless-sdk/toolchain/
./build_toolchain.sh

Ensuite il faut installer le code source de Giac/Xcas 16.

wget https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac/giac_stable.tgz
tar xvfa giac_stable.tgz
cd giac-1.9.0/micropython-1.12/nspire

ouvrir le fichier mklib et ajuster le chemin pour recopier la librairie libmicropy.a,
puis

sh mklib
cd ../../src
cp config.h.nspire config.h
cp Makefile.nspire Makefile

ajustez les chemins dans le fichier Makefile puis tapez make.
À compléter.

14. https://github.com/M4xi1m3/nw-atom
15. https://hackspire.org/index.php/C_and_assembly_development_

introduction
16. https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac_fr.html

46

https://hackspire.org/index.php/C_and_assembly_development_introduction
https://hackspire.org/index.php/C_and_assembly_development_introduction
https://www-fourier.univ-grenoble-alpes.fr/~parisse/giac_fr.html

	Introduction
	Installation
	Examens
	Mise en garde

	Interface "pretty print"
	Interface shell: premiers pas
	Commandes usuelles de calcul formel
	Développer et factoriser
	Analyse
	Résoudre
	Arithmétique
	Entiers
	Polynômes
	Z/nZ et corps finis

	Algèbre linéaire, vecteurs, matrices

	Probabilités et statistiques
	Tirages aléatoires
	Lois de probabilités
	Statistiques descriptives 1-d
	Statistiques descriptives 2-d, régressions.

	Courbes et autres représentations graphiques
	Géométrie analytique.
	Unités et constantes physiques.
	L'éditeur d'expressions
	Sessions de calculs
	Edition de l'historique.
	Variables
	Sauvegarde et compatibilité

	Programmation
	Prise en main (programmation)
	Quelques exemples
	Commandes utilisables

	Interpréteur MicroPython intégré
	Les modules standard : math, cmath, random
	Le module cas
	Le module graphic
	Le module matplotl
	Le module arit
	Le module linalg
	Le module numpy

	Applications additionnelles.
	Raccourcis claviers.
	Extinction, reset, horloge.
	Copyright, licences et remerciements
	Développement en C++ avec CAS et Ndless

