A new flag inspired by ti89 mode
Publié : jeu. mai 24, 2018 3:07 am
Hello BP, in ti89 mode the output is more explicit because it includes the Boolean operators and variables. I think that a flag that allows to see the output only with variables, makes the output more explicit, especially when there are infinite solutions or depends on a parameter. Also to avoid confusion when the variables are not ordered
Example 1:
xcas mode (current)
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[3,4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[4,3]]
ti89 mode
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns (x=3) and (y=4)
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns (y=4) and (x=3)
xcas mode and show vars in solutions on [✓]
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[x=3,y=4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[y=4,x=3]]
xcas mode and show vars in solutions off []
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[3,4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[4,3]]
Example 2:
xcas mode (current)
solve([x+y=2, 2x+2y=4],[x,y]) returns [[-y+2, y]]
ti89 mode
solve([x+y=2, 2x+2y=4],[x,y]) returns (x=-y+2) and (y=y)
xcas mode and show vars in solutions on [✓]
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[x=-y+2, (y=y)]]
xcas mode and show vars in solutions off []
solve([x+y=2, 2x+2y=4],[x,y]) returns [[-y+2, y]]
Example 3:
xcas mode (current)
solve((√(x^2-4*x+20)) = 5,x) returns [-1,5]
ti89 mode
solve((√(x^2-4*x+20)) = 5,x) returns (x=-1) or (x=5)
xcas mode and show vars in solutions on [✓]
solve((√(x^2-4*x+20)) = 5,x) returns [x=-1, x=5]
xcas mode and show vars in solutions off []
solve((√(x^2-4*x+20)) = 5,x) returns [-1,5]
Example 4:
cas mode and show vars in solutions on [✓]
solve([y=2*x,2*x^2=8],[x,y]) returns [[x=2,y=4],[x=-2,y=-4]]
Example 5:
xcas mode and show vars in solutions on [✓]
solve(y=2*x,[y,x]) returns [[y=2*x, x=x]]
solve(y=2*x,[x,y]) returns[[x=y/2, y=y]]
Example 1:
xcas mode (current)
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[3,4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[4,3]]
ti89 mode
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns (x=3) and (y=4)
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns (y=4) and (x=3)
xcas mode and show vars in solutions on [✓]
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[x=3,y=4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[y=4,x=3]]
xcas mode and show vars in solutions off []
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[3,4]]
solve([3x-2*y=1,2*x+3*y=18],[y,x]) returns [[4,3]]
Example 2:
xcas mode (current)
solve([x+y=2, 2x+2y=4],[x,y]) returns [[-y+2, y]]
ti89 mode
solve([x+y=2, 2x+2y=4],[x,y]) returns (x=-y+2) and (y=y)
xcas mode and show vars in solutions on [✓]
solve([3x-2*y=1,2*x+3*y=18],[x,y]) returns [[x=-y+2, (y=y)]]
xcas mode and show vars in solutions off []
solve([x+y=2, 2x+2y=4],[x,y]) returns [[-y+2, y]]
Example 3:
xcas mode (current)
solve((√(x^2-4*x+20)) = 5,x) returns [-1,5]
ti89 mode
solve((√(x^2-4*x+20)) = 5,x) returns (x=-1) or (x=5)
xcas mode and show vars in solutions on [✓]
solve((√(x^2-4*x+20)) = 5,x) returns [x=-1, x=5]
xcas mode and show vars in solutions off []
solve((√(x^2-4*x+20)) = 5,x) returns [-1,5]
Example 4:
cas mode and show vars in solutions on [✓]
solve([y=2*x,2*x^2=8],[x,y]) returns [[x=2,y=4],[x=-2,y=-4]]
Example 5:
xcas mode and show vars in solutions on [✓]
solve(y=2*x,[y,x]) returns [[y=2*x, x=x]]
solve(y=2*x,[x,y]) returns[[x=y/2, y=y]]