simplify (a^b)^c
Modérateur : xcasadmin
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :
simplify (a^b)^c
Hello
With what command can I simplify the following expression?
(3^x)^2/(2^x)^3 -> (9/8)^x
With what command can I simplify the following expression?
(3^x)^2/(2^x)^3 -> (9/8)^x
Dernière modification par compsystems le dim. août 20, 2017 5:12 pm, modifié 1 fois.
Re: simplify a^b^c
exp2pow(exp(lncollect(factor(lnexpand(ln((3^x)^2/(2^x)^3))))))
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :
Re: simplify (a^b)^c
Hola Bernard
As (a^b)^c = a^(b*c) = a^(c*b) = (a^c)^b
You can add a rule to the Xcas engine, that is, if b or c are numbers, place them before the variables, so that simplification can be given between numbers, this reduces the expression
(3^x)^2 = 3^(x*2) = 3^(2*x) => (3^2)^x = 9^x

As (a^b)^c = a^(b*c) = a^(c*b) = (a^c)^b
You can add a rule to the Xcas engine, that is, if b or c are numbers, place them before the variables, so that simplification can be given between numbers, this reduces the expression
(3^x)^2 = 3^(x*2) = 3^(2*x) => (3^2)^x = 9^x

Re: simplify a^b^c
Your rule requires additional assumptions. For example ((-1)^(2/3))^2 is not equal to ((-1)^2)^(2/3). And it is not always desirable to replace (3^x)^2 by 9^x.
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :
Re: simplify a^b^c
What other assumptions should be taken?parisse a écrit :Your rule requires additional assumptions. For example ((-1)^(2/3))^2 is not equal to ((-1)^2)^(2/3).
It seems that the base must be a really positive number.
((1.5)^(2))^(2/3) -> 1.71707136383
((1.5)^(2/3))^2 -> 1.71707136383
In which cases?parisse a écrit : And it is not always desirable to replace (3^x)^2 by 9^x.
Re: simplify a^b^c
For example solve 3^x+(3^x)^2=12.
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :
Re: simplify (a^b)^c
The solution is the same when exchanging the exponents (a^b)^c -> (a^c)^bparisse a écrit :For example solve 3^x+(3^x)^2=12.
solve(3^x+(3^x)^2=12) -> x=1
solve(3^x+(3^2)^x=12) -> x=1
solve(3^x+(9)^x=12) -> x=1
a^(b^c) = a^b^c
a^(b^c) ≠ a^(c^d)
(a^b)^c = (a^c)^b = a^(b*c) = a^(c*b) = (a^c)^b
Re: simplify (a^b)^c
How do you think Xcas can solve 3^x+9^x=12?
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :
Re: simplify (a^b)^c
I do not know the computational algorithms of an algebraic system 
