Hello,
In the rational expresión (8*x^2+x+7+6/x+2/x^2+5/x^3) find the factorization by the common factor
GCD function gcd(8*x^2,x,7,6/x,2/x^2,5/x^3) return 1, other CAS returns x^-3 (this is also work with rational expressions)
factoring by common factor it is possible to do GCD(terms)*[expr/GCD(terms)]
x^-3*( (8*x^2+x+7+6/x+2/x^2+5/x^3) / (x^-3)
expand( (8*x^2+x+7+6/x+2/x^2+5/x^3) / (x^-3) ) returns 8*x^5+x^4+7*x^3+6*x^2+2*x+5
finally the factorization of (8*x^2+x+7+6/x+2/x^2+5/x^3) = (x^-3)* (8*x^5+x^4+7*x^3+6*x^2+2*x+5)
now
factor(8*x^2+x+7+6/x+2/x^2+5/x^3) returns (8*x^5+x^4+7*x^3+6*x^2+2*x+5) / (x^3)
but this output is not a true product, please can you improve the way to show the result without converting negative powers to quotients, so it would look like this
factor(8*x^2+x+7+6/x+2/x^2+5/x^3) returns (8*x^5+x^4+7*x^3+6*x^2+2*x+5) * (x^-3)
gcd(8*x^2,x,7,6/x,2/x^2,5/x^3) & factor()
Modérateur : xcasadmin
-
- Messages : 603
- Inscription : sam. févr. 04, 2017 11:34 pm
- Localisation : Colombia
- Contact :