gcd(8*x^2,x,7,6/x,2/x^2,5/x^3) & factor()

Messages in english

Modérateur : xcasadmin

compsystems
Messages : 603
Inscription : sam. févr. 04, 2017 11:34 pm
Localisation : Colombia
Contact :

gcd(8*x^2,x,7,6/x,2/x^2,5/x^3) & factor()

Message par compsystems » jeu. oct. 10, 2024 3:25 am

Hello,
In the rational expresión (8*x^2+x+7+6/x+2/x^2+5/x^3) find the factorization by the common factor

GCD function gcd(8*x^2,x,7,6/x,2/x^2,5/x^3) return 1, other CAS returns x^-3 (this is also work with rational expressions)

factoring by common factor it is possible to do GCD(terms)*[expr/GCD(terms)]

x^-3*( (8*x^2+x+7+6/x+2/x^2+5/x^3) / (x^-3)

expand( (8*x^2+x+7+6/x+2/x^2+5/x^3) / (x^-3) ) returns 8*x^5+x^4+7*x^3+6*x^2+2*x+5

finally the factorization of (8*x^2+x+7+6/x+2/x^2+5/x^3) = (x^-3)* (8*x^5+x^4+7*x^3+6*x^2+2*x+5)

now
factor(8*x^2+x+7+6/x+2/x^2+5/x^3) returns (8*x^5+x^4+7*x^3+6*x^2+2*x+5) / (x^3)

but this output is not a true product, please can you improve the way to show the result without converting negative powers to quotients, so it would look like this

factor(8*x^2+x+7+6/x+2/x^2+5/x^3) returns (8*x^5+x^4+7*x^3+6*x^2+2*x+5) * (x^-3)

Répondre